You can take part in this work. Join the working group's discussion list.
Web designers! We have a FAQ, a forum, and a help mailing list for you!
© Copyright 2004-2009 Apple Computer, Inc., Mozilla Foundation, and Opera Software ASA.
You are granted a license to use, reproduce and create derivative works of this document.
This specification evolves HTML and its related APIs to ease the authoring of Web-based applications. Additions include context menus, a direct-mode graphics canvas, a full duplex client-server communication channel, more semantics, audio and video, various features for offline Web applications, sandboxed iframes, and scoped styling. Heavy emphasis is placed on keeping the language backwards compatible with existing legacy user agents and on keeping user agents backwards compatible with existing legacy documents.
This is a work in progress! This document is changing on a daily if not hourly basis in response to comments and as a general part of its development process. Comments are very welcome, please send them to whatwg@whatwg.org. Thank you.
The current focus is in responding to the outstanding feedback. (There is a chart showing current progress.)
Implementors should be aware that this specification is not stable. Implementors who are not taking part in the discussions are likely to find the specification changing out from under them in incompatible ways. Vendors interested in implementing this specification before it eventually reaches the call for implementations should join the WHATWG mailing list and take part in the discussions.
This specification is also being produced by the W3C HTML WG. The two specifications are identical from the table of contents onwards.
This specification is intended to replace (be the new version of) what was previously the HTML4, XHTML 1.x, and DOM2 HTML specifications.
Different parts of this specification are at different levels of maturity.
Some of the more major known issues are marked like this. There are many other issues that have been raised as well; the issues given in this document are not the only known issues! Also, firing of events needs to be unified (right now some bubble, some don't, they all use different text to fire events, etc).
a
elementq
elementcite
elementem
elementstrong
elementsmall
elementmark
elementdfn
elementabbr
elementtime
elementprogress
elementmeter
elementcode
elementvar
elementsamp
elementkbd
elementsub
and sup
elementsspan
elementi
elementb
elementbdo
elementruby
elementrt
elementrp
elementfigure
elementimg
element
iframe
elementembed
elementobject
elementparam
elementvideo
element
audio
element
source
elementcanvas
element
canvas
elementsmap
elementarea
elementtable
elementcaption
elementcolgroup
elementcol
elementtbody
elementthead
elementtfoot
elementtr
elementtd
elementth
elementtd
and th
elementsform
elementfieldset
elementlabel
elementinput
element
type
attribute
input
element attributes
autocomplete
attributelist
attributereadonly
attributesize
attributerequired
attributemultiple
attributemaxlength
attributepattern
attributemin
and max
attributesstep
attributeplaceholder
attributeinput
element APIsbutton
elementselect
elementdatalist
elementoptgroup
elementoption
elementtextarea
elementkeygen
elementoutput
elementdetails
elementdatagrid
element
command
elementbb
element
menu
element
a
element to define a commandbutton
element to define a commandinput
element to define a commandoption
element to define a commandcommand
element to define
a commandbb
element to define a commandWindowProxy
objectWindow
object
alternate
"archives
"author
"bookmark
"external
"feed
"help
"icon
"license
"nofollow
"noreferrer
"pingback
"prefetch
"search
"stylesheet
"sidebar
"tag
"hidden
attributecontenteditable
attribute
bb
elementbutton
elementdatagrid
elementdetails
elementinput
element as a text entry widgetinput
element as domain-specific widgetsinput
element as a range controlinput
element as a color wellinput
element as a check box and radio button widgetsinput
element as a file upload controlinput
element as a buttonmarquee
elementmeter
elementprogress
elementselect
elementtextarea
elementkeygen
elementtime
elementThis section is non-normative.
The World Wide Web's markup language has always been HTML. HTML was primarily designed as a language for semantically describing scientific documents, although its general design and adaptations over the years has enabled it to be used to describe a number of other types of documents.
The main area that has not been adequately addressed by HTML is a vague subject referred to as Web Applications. This specification attempts to rectify this, while at the same time updating the HTML specifications to address issues raised in the past few years.
This section is non-normative.
This specification is intended for authors of documents and scripts that use the features defined in this specification, and implementors of tools that are intended to conform to this specification, and individuals wishing to establish the correctness of documents or implementations with respect to the requirements of this specification.
This document is probably not suited to readers who do not already have at least a passing familiarity with Web technologies, as in places it sacrifices clarity for precision, and brevity for completeness. More approachable tutorials and authoring guides can provide a gentler introduction to the topic.
In particular, readers should be familiar with the basics of DOM Core and DOM Events before reading this specification. An understanding of WebIDL, HTTP, XML, Unicode, character encodings, JavaScript, and CSS will be helpful in places but is not essential.
This section is non-normative.
This specification is limited to providing a semantic-level markup language and associated semantic-level scripting APIs for authoring accessible pages on the Web ranging from static documents to dynamic applications.
The scope of this specification does not include providing mechanisms for media-specific customization of presentation (although default rendering rules for Web browsers are included at the end of this specification, and several mechanisms for hooking into CSS are provided as part of the language).
The scope of this specification does not include documenting
every HTML or DOM feature supported by Web browsers. Browsers
support many features that are considered to be very bad for
accessibility or that are otherwise inappropriate. For example, the
blink
element is clearly presentational and authors
wishing to cause text to blink should instead use CSS.
The scope of this specification is not to describe an entire operating system. In particular, hardware configuration software, image manipulation tools, and applications that users would be expected to use with high-end workstations on a daily basis are out of scope. In terms of applications, this specification is targeted specifically at applications that would be expected to be used by users on an occasional basis, or regularly but from disparate locations, with low CPU requirements. For instance online purchasing systems, searching systems, games (especially multiplayer online games), public telephone books or address books, communications software (e-mail clients, instant messaging clients, discussion software), document editing software, etc.
This section is non-normative.
Work on HTML5 originally started in late 2003, as a proof of concept to show that it was possible to extend HTML4's forms to provide many of the features that XForms 1.0 introduced, without requiring browsers to implement rendering engines that were incompatible with existing HTML Web pages. At this early stage, while the draft was already publicly available, and input was already being solicited from all sources, the specification was only under Opera Software's copyright.
In early 2004, some of the principles that underlie this effort, as well as an early draft proposal covering just forms-related features, were presented to the W3C jointly by Mozilla and Opera at a workshop discussing the future of Web Applications on the Web. The proposal was rejected on the grounds that the proposal conflicted with the previously chosen direction for the Web's evolution.
Shortly thereafter, Apple, Mozilla, and Opera jointly announced their intent to continue working on the effort. A public mailing list was created, and the drafts were moved to the WHATWG site. The copyright was subsequently amended to be jointly owned by all three vendors, and to allow reuse of the specifications.
In 2006, the W3C expressed interest in the specification, and created a working group chartered to work with the WHATWG on the development of the HTML5 specifications. The working group opened in 2007. Apple, Mozilla, and Opera allowed the W3C to publish the specifications under the W3C copyright, while keeping versions with the less restrictive license on the WHATWG site.
Since then, both groups have been working together.
This section is non-normative.
It must be admitted that many aspects of HTML appear at first glance to be nonsensical and inconsistent.
HTML, its supporting DOM APIs, as well as many of its supporting technologies, have been developed over a period of several decades by a wide array of people with different priorities who, in many cases, did not know of each other's existence.
Features have thus arisen from many sources, and have not always been designed in especially consistent ways. Furthermore, because of the unique characteristics of the Web, implementation bugs have often become de-facto, and now de-jure, standards, as content is often unintentionally written in ways that rely on them before they can be fixed.
Despite all this, efforts have been made to adhere to certain design goals. These are described in the next few subsections.
This section is non-normative.
To avoid exposing Web authors to the complexities of multithreading, the HTML and DOM APIs are designed such that no script can ever detect the simultaneous execution of other scripts. Even with workers, the intent is that the behavior of implementations can be thought of as completely serialising the execution of all scripts in all browsing contexts.
The navigator.getStorageUpdates()
method, in this model, is equivalent to allowing other scripts to
run while the calling script is blocked.
This section is non-normative.
HTML5 interacts with and relies on a wide variety of other specifications. In certain circumstances, unfortunately, the desire to be compatible with legacy content has led to HTML5 violating the requirements of these other specifications. Whenever this has occured, the transgressions have been noted as "willful violations".
This section is non-normative.
This specification represents a new version of HTML4, along with a new version of the associated DOM2 HTML API. Migration from HTML4 to the format and APIs described in this specification should in most cases be straightforward, as care has been taken to ensure that backwards-compatibility is retained. [HTML4] [DOM2HTML]
This section is non-normative.
This specification is intended to replace XHTML 1.0 as the normative definition of the XML serialization of the HTML vocabulary. [XHTML10]
While this specification updates the semantics and requirements of the vocabulary defined by XHTML Modularization 1.1 and used by XHTML 1.1, it does not attempt to provide a replacement for the modularization scheme defined and used by those (and other) specifications, and therefore cannot be considered a complete replacement for them. [XHTMLMOD] [XHTML11]
Thus, authors and implementors who do not need such a modularization scheme can consider this specification a replacement for XHTML 1.x, but those who do need such a mechanism are encouraged to continue using the XHTML 1.1 line of specifications.
This section is non-normative.
XHTML2 defines a new vocabulary with features for hyperlinks, multimedia content, annotating document edits, rich metadata, declarative interactive forms, and describing the semantics of human literary works such as poems and scientific papers. [XHTML2]
XForms similarly defines a new vocabulary with features for complex data entry, such as tax forms or insurance forms.
However, XHTML2 and XForms lack features to express the semantics of many of the non-document types of content often seen on the Web. For instance, they are not well-suited for marking up forum sites, auction sites, search engines, online shops, mapping applications, e-mail applications, word processors, real-time strategy games, and the like.
This specification aims to extend HTML so that it is also suitable in these contexts.
XHTML2, XForms, and this specification all use different namespaces and therefore can all be implemented in the same XML processor.
This section is non-normative.
This specification defines an abstract language for describing documents and applications, and some APIs for interacting with in-memory representations of resources that use this language.
The in-memory representation is known as "DOM5 HTML", or "the DOM" for short.
There are various concrete syntaxes that can be used to transmit resources that use this abstract language, two of which are defined in this specification.
The first such concrete syntax is "HTML5". This is the format
recommended for most authors. It is compatible with all legacy Web
browsers. If a document is transmitted with the MIME type text/html
, then it will be processed as an "HTML5"
document by Web browsers.
The second concrete syntax uses XML, and is known as
"XHTML5". When a document is transmitted with an XML MIME type, such
as application/xhtml+xml
, then it is processed
by an XML processor by Web browsers, and treated as an "XHTML5"
document. Authors are reminded that the processing for XML and HTML
differs; in particular, even minor syntax errors will prevent an XML
document from being rendered fully, whereas they would be ignored in
the "HTML5" syntax.
The "DOM5 HTML", "HTML5", and "XHTML5" representations cannot all
represent the same content. For example, namespaces cannot be
represented using "HTML5", but they are supported in "DOM5 HTML" and
"XHTML5". Similarly, documents that use the noscript
feature can be represented using "HTML5", but cannot be represented
with "XHTML5" and "DOM5 HTML". Comments that contain the string
"-->
" can be represented in "DOM5 HTML" but
not in "HTML5" and "XHTML5". And so forth.
This section is non-normative.
This specification is divided into the following major sections:
There are also a couple of appendices, defining rendering rules for Web browsers and listing areas that are out of scope for this specification.
This specification should be read like all other specifications. First, it should be read cover-to-cover, multiple times. Then, it should be read backwards at least once. Then it should be read by picking random sections from the contents list and following all the cross-references.
This is a definition, requirement, or explanation.
This is a note.
This is an example.
This is an open issue.
This is a warning.
interface Example { // this is an IDL definition };
method
( [ optionalArgument ] )This is a note to authors describing the usage of an interface.
/* this is a CSS fragment */
The defining instance of a term is marked up like this. Uses of that term are marked up like this or like this.
The defining instance of an element, attribute, or API is marked
up like this
. References to
that element, attribute, or API are marked up like this
.
Other code fragments are marked up like
this
.
Variables are marked up like this.
This is an implementation requirement.
This specification refers to both HTML and XML attributes and DOM attributes, often in the same context. When it is not clear which is being referred to, they are referred to as content attributes for HTML and XML attributes, and DOM attributes for those from the DOM. Similarly, the term "properties" is used for both JavaScript object properties and CSS properties. When these are ambiguous they are qualified as object properties and CSS properties respectively.
The term HTML documents is sometimes used in contrast with XML documents to specifically mean documents that were parsed using an HTML parser (as opposed to using an XML parser or created purely through the DOM).
Generally, when the specification states that a feature applies to HTML or XHTML, it also includes the other. When a feature specifically only applies to one of the two languages, it is called out by explicitly stating that it does not apply to the other format, as in "for HTML, ... (this does not apply to XHTML)".
This specification uses the term document to refer to any use of HTML, ranging from short static documents to long essays or reports with rich multimedia, as well as to fully-fledged interactive applications.
For simplicity, terms such as shown, displayed, and visible might sometimes be used when referring to the way a document is rendered to the user. These terms are not meant to imply a visual medium; they must be considered to apply to other media in equivalent ways.
To ease migration from HTML to XHTML, UAs
conforming to this specification will place elements in HTML in the
http://www.w3.org/1999/xhtml
namespace, at least for
the purposes of the DOM and CSS. The term "elements in the HTML
namespace", or "HTML elements" for short, when used
in this specification, thus refers to both HTML and XHTML
elements.
Unless otherwise stated, all elements defined or mentioned in
this specification are in the
http://www.w3.org/1999/xhtml
namespace, and all
attributes defined or mentioned in this specification have no
namespace (they are in the per-element partition).
When an XML name, such as an attribute or element name, is
referred to in the form prefix:localName
, as in xml:id
or
svg:rect
, it refers to a name with the local name localName and the namespace given by the prefix, as
defined by the following table:
xml
http://www.w3.org/XML/1998/namespace
html
http://www.w3.org/1999/xhtml
svg
http://www.w3.org/2000/svg
Attribute names are said to be XML-compatible if they
match the Name
production defined in XML, they contain no
U+003A COLON (:) characters, and their first three characters are
not an ASCII case-insensitive match for the string
"xml
". [XML]
The term root element, when not explicitly qualified as referring to the document's root element, means the furthest ancestor element node of whatever node is being discussed, or the node itself if it has no ancestors. When the node is a part of the document, then that is indeed the document's root element; however, if the node is not currently part of the document tree, the root element will be an orphaned node.
A node's home subtree is the subtree rooted at that node's root element.
The Document
of a Node
(such as an
element) is the Document
that the Node
's
ownerDocument
DOM attribute returns.
An element is said to have been inserted into a document when its root
element changes and is now the document's root
element. If a Node
is in a Document
then that Document
is always the Node
's
Document
, and the Node
's ownerDocument
DOM attribute thus always returns that
Document
.
The term tree order means a pre-order, depth-first
traversal of DOM nodes involved (through the parentNode
/childNodes
relationship).
When it is stated that some element or attribute is ignored, or treated as some other value, or handled as if it was something else, this refers only to the processing of the node after it is in the DOM. A user agent must not mutate the DOM in such situations.
The term text node refers to any Text
node, including CDATASection
nodes; specifically, any
Node
with node type TEXT_NODE
(3)
or CDATA_SECTION_NODE
(4). [DOM3CORE]
The construction "a Foo
object", where
Foo
is actually an interface, is sometimes used instead
of the more accurate "an object implementing the interface
Foo
".
A DOM attribute is said to be getting when its value is being retrieved (e.g. by author script), and is said to be setting when a new value is assigned to it.
If a DOM object is said to be live, then that means that any attributes returning that object must always return the same object (not a new object each time), and the attributes and methods on that object must operate on the actual underlying data, not a snapshot of the data.
The terms fire and dispatch are used interchangeably in the context of events, as in the DOM Events specifications. [DOM3EVENTS]
The term plugin is used to mean any content handler, typically a third-party content handler, for Web content types that are not supported by the user agent natively, or for content types that do not expose a DOM, that supports rendering the content as part of the user agent's interface.
One example of a plugin would be a PDF viewer that is instantiated in a browsing context when the user navigates to a PDF file. This would count as a plugin regardless of whether the party that implemented the PDF viewer component was the same as that which implemented the user agent itself. However, a PDF viewer application that launches separate from the user agent (as opposed to using the same interface) is not a plugin by this definition.
This specification does not define a mechanism for interacting with plugins, as it is expected to be user-agent- and platform-specific. Some UAs might opt to support a plugin mechanism such as the Netscape Plugin API; others might use remote content converters or have built-in support for certain types. [NPAPI]
Browsers should take extreme care when interacting with external content intended for plugins. When third-party software is run with the same privileges as the user agent itself, vulnerabilities in the third-party software become as dangerous as those in the user agent.
An ASCII-compatible character encoding is one that is a superset of US-ASCII (specifically, ANSI_X3.4-1968) for bytes in the set 0x09, 0x0A, 0x0C, 0x0D, 0x20 - 0x22, 0x26, 0x27, 0x2C - 0x3F, 0x41 - 0x5A, and 0x61 - 0x7A.
All diagrams, examples, and notes in this specification are non-normative, as are all sections explicitly marked non-normative. Everything else in this specification is normative.
The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this document are to be interpreted as described in RFC2119. For readability, these words do not appear in all uppercase letters in this specification. [RFC2119]
Requirements phrased in the imperative as part of algorithms (such as "strip any leading space characters" or "return false and abort these steps") are to be interpreted with the meaning of the key word ("must", "should", "may", etc) used in introducing the algorithm.
This specification describes the conformance criteria for user agents (relevant to implementors) and documents (relevant to authors and authoring tool implementors).
There is no implied relationship between document conformance requirements and implementation conformance requirements. User agents are not free to handle non-conformant documents as they please; the processing model described in this specification applies to implementations regardless of the conformity of the input documents.
User agents fall into several (overlapping) categories with different conformance requirements.
Web browsers that support XHTML must process elements and attributes from the HTML namespace found in XML documents as described in this specification, so that users can interact with them, unless the semantics of those elements have been overridden by other specifications.
A conforming XHTML processor would, upon
finding an XHTML script
element in an XML document,
execute the script contained in that element. However, if the
element is found within a transformation expressed in XSLT
(assuming the user agent also supports XSLT), then the processor
would instead treat the script
element as an opaque
element that forms part of the transform.
Web browsers that support HTML must
process documents labeled as text/html
as described
in this specification, so that users can interact with them.
User agents that support scripting must also be conforming implementations of the IDL fragments in this specification, as described in the WebIDL specification. [WebIDL]
User agents that process HTML and XHTML documents purely to render non-interactive versions of them must comply to the same conformance criteria as Web browsers, except that they are exempt from requirements regarding user interaction.
Typical examples of non-interactive presentation user agents are printers (static UAs) and overhead displays (dynamic UAs). It is expected that most static non-interactive presentation user agents will also opt to lack scripting support.
A non-interactive but dynamic presentation UA would still execute scripts, allowing forms to be dynamically submitted, and so forth. However, since the concept of "focus" is irrelevant when the user cannot interact with the document, the UA would not need to support any of the focus-related DOM APIs.
Implementations that do not support scripting (or which have their scripting features disabled entirely) are exempt from supporting the events and DOM interfaces mentioned in this specification. For the parts of this specification that are defined in terms of an events model or in terms of the DOM, such user agents must still act as if events and the DOM were supported.
Scripting can form an integral part of an application. Web browsers that do not support scripting, or that have scripting disabled, might be unable to fully convey the author's intent.
Conformance checkers must verify that a document conforms to
the applicable conformance criteria described in this
specification. Automated conformance checkers are exempt from
detecting errors that require interpretation of the author's
intent (for example, while a document is non-conforming if the
content of a blockquote
element is not a quote,
conformance checkers running without the input of human judgement
do not have to check that blockquote
elements only
contain quoted material).
Conformance checkers must check that the input document conforms when parsed without a browsing context (meaning that no scripts are run, and that the parser's scripting flag is disabled), and should also check that the input document conforms when parsed with a browsing context in which scripts execute, and that the scripts never cause non-conforming states to occur other than transiently during script execution itself. (This is only a "SHOULD" and not a "MUST" requirement because it has been proven to be impossible. [HALTINGPROBLEM])
The term "HTML5 validator" can be used to refer to a conformance checker that itself conforms to the applicable requirements of this specification.
XML DTDs cannot express all the conformance requirements of this specification. Therefore, a validating XML processor and a DTD cannot constitute a conformance checker. Also, since neither of the two authoring formats defined in this specification are applications of SGML, a validating SGML system cannot constitute a conformance checker either.
To put it another way, there are three types of conformance criteria:
A conformance checker must check for the first two. A simple DTD-based validator only checks for the first class of errors and is therefore not a conforming conformance checker according to this specification.
Applications and tools that process HTML and XHTML documents for reasons other than to either render the documents or check them for conformance should act in accordance to the semantics of the documents that they process.
A tool that generates document outlines but increases the nesting level for each paragraph and does not increase the nesting level for each section would not be conforming.
Authoring tools and markup generators must generate conforming documents. Conformance criteria that apply to authors also apply to authoring tools, where appropriate.
Authoring tools are exempt from the strict requirements of using elements only for their specified purpose, but only to the extent that authoring tools are not yet able to determine author intent.
For example, it is not conforming to use an
address
element for arbitrary contact information;
that element can only be used for marking up contact information
for the author of the document or section. However, since an
authoring tool is likely unable to determine the difference, an
authoring tool is exempt from that requirement.
In terms of conformance checking, an editor is therefore required to output documents that conform to the same extent that a conformance checker will verify.
When an authoring tool is used to edit a non-conforming document, it may preserve the conformance errors in sections of the document that were not edited during the editing session (i.e. an editing tool is allowed to round-trip erroneous content). However, an authoring tool must not claim that the output is conformant if errors have been so preserved.
Authoring tools are expected to come in two broad varieties: tools that work from structure or semantic data, and tools that work on a What-You-See-Is-What-You-Get media-specific editing basis (WYSIWYG).
The former is the preferred mechanism for tools that author HTML, since the structure in the source information can be used to make informed choices regarding which HTML elements and attributes are most appropriate.
However, WYSIWYG tools are legitimate. WYSIWYG tools should use
elements they know are appropriate, and should not use elements
that they do not know to be appropriate. This might in certain
extreme cases mean limiting the use of flow elements to just a few
elements, like div
, b
, i
,
and span
and making liberal use of the style
attribute.
All authoring tools, whether WYSIWYG or not, should make a best effort attempt at enabling users to create well-structured, semantically rich, media-independent content.
Some conformance requirements are phrased as requirements on elements, attributes, methods or objects. Such requirements fall into two categories: those describing content model restrictions, and those describing implementation behavior. Those in the former category are requirements on documents and authoring tools. Those in the second category are requirements on user agents.
Conformance requirements phrased as algorithms or specific steps may be implemented in any manner, so long as the end result is equivalent. (In particular, the algorithms defined in this specification are intended to be easy to follow, and not intended to be performant.)
User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g. to prevent denial of service attacks, to guard against running out of memory, or to work around platform-specific limitations.
For compatibility with existing content and prior specifications, this specification describes two authoring formats: one based on XML (referred to as XHTML5), and one using a custom format inspired by SGML (referred to as HTML5). Implementations may support only one of these two formats, although supporting both is encouraged.
The language in this specification assumes that the user agent expands all entity references, and therefore does not include entity reference nodes in the DOM. If user agents do include entity reference nodes in the DOM, then user agents must handle them as if they were fully expanded when implementing this specification. For example, if a requirement talks about an element's child text nodes, then any text nodes that are children of an entity reference that is a child of that element would be used as well. Entity references to unknown entities must be treated as if they contained just an empty text node for the purposes of the algorithms defined in this specification.
This specification relies on several other underlying specifications.
Implementations that support XHTML5 must support some version of XML, as well as its corresponding namespaces specification, because XHTML5 uses an XML serialization with namespaces. [XML] [XMLNAMES]
The Document Object Model (DOM) is a representation — a model — of a document and its content. The DOM is not just an API; the conformance criteria of HTML implementations are defined, in this specification, in terms of operations on the DOM. [DOM3CORE]
Implementations must support some version of DOM Core and DOM Events, because this specification is defined in terms of the DOM, and some of the features are defined as extensions to the DOM Core interfaces. [DOM3CORE] [DOM3EVENTS]
The IDL fragments in this specification must be interpreted as required for conforming IDL fragments, as described in the Web IDL specification. [WebIDL]
Some parts of the language described by this specification only support JavaScript as the underlying scripting language. [ECMA262]
The term "JavaScript" is used to refer to ECMA262,
rather than the official term ECMAScript, since the term
JavaScript is more widely known. Similarly, the MIME type used to
refer to JavaScript in this specification is text/javascript
, since that is the most commonly
used type, despite it being an
officially obsoleted type according to RFC 4329. [RFC4329]
Implementations must support some version of the Media Queries language. [MQ]
This specification does not require support of any particular network transport protocols, style sheet language, scripting language, or any of the DOM and WebAPI specifications beyond those described above. However, the language described by this specification is biased towards CSS as the styling language, JavaScript as the scripting language, and HTTP as the network protocol, and several features assume that those languages and protocols are in use.
This specification might have certain additional requirements on character encodings, image formats, audio formats, and video formats in the respective sections.
this section will be removed at some point
Some elements are defined in terms of their DOM
textContent
attribute. This is an attribute
defined on the Node
interface in DOM3 Core. [DOM3CORE]
The rules for handling alternative style sheets are defined in the CSS object model specification. [CSSOM]
This section will eventually be removed in favor of WebIDL.
A lot of arrays/lists/collections in this spec assume zero-based indexes but use the term "indexth" liberally. We should define those to be zero-based and be clearer about this.
Unless otherwise specified, if a DOM attribute that is a floating
point number type (float
) is assigned an
Infinity or Not-a-Number value, a NOT_SUPPORTED_ERR
exception must be
raised.
Unless otherwise specified, if a method with an argument that is a
floating point number type (float
) is passed
an Infinity or Not-a-Number value, a NOT_SUPPORTED_ERR
exception must be
raised.
Unless otherwise specified, if a method is passed fewer
arguments than is defined for that method in its IDL definition,
a NOT_SUPPORTED_ERR
exception must be
raised.
Unless otherwise specified, if a method is passed more arguments than is defined for that method in its IDL definition, the excess arguments must be ignored.
This specification defines several comparison operators for strings.
Comparing two strings in a case-sensitive manner means comparing them exactly, code point for code point.
Comparing two strings in an ASCII case-insensitive manner means comparing them exactly, code point for code point, except that the characters in the range U+0041 .. U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z) and the corresponding characters in the range U+0061 .. U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z) are considered to also match.
Comparing two strings in a compatibility caseless manner means using the Unicode compatibility caseless match operation to compare the two strings. [UNICODECASE]
Converting a string to uppercase means replacing all characters in the range U+0061 .. U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z) with the corresponding characters in the range U+0041 .. U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z).
Converting a string to lowercase means replacing all characters in the range U+0041 .. U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z) with the corresponding characters in the range U+0061 .. U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z).
A string pattern is a prefix match for a string s when pattern is not longer than s and truncating s to pattern's length leaves the two strings as matches of each other.
There are various places in HTML that accept particular data types, such as dates or numbers. This section describes what the conformance criteria for content in those formats is, and how to parse them.
Need to go through the whole spec and make sure all the attribute values are clearly defined either in terms of microsyntaxes or in terms of other specs, or as "Text" or some such.
The space characters, for the purposes of this specification, are U+0020 SPACE, U+0009 CHARACTER TABULATION (tab), U+000A LINE FEED (LF), U+000C FORM FEED (FF), and U+000D CARRIAGE RETURN (CR).
The White_Space characters are those that have the Unicode property "White_Space". [UNICODE]
Some of the micro-parsers described below follow the pattern of having an input variable that holds the string being parsed, and having a position variable pointing at the next character to parse in input.
For parsers based on this pattern, a step that requires the user agent to collect a sequence of characters means that the following algorithm must be run, with characters being the set of characters that can be collected:
Let input and position be the same variables as those of the same name in the algorithm that invoked these steps.
Let result be the empty string.
While position doesn't point past the end of input and the character at position is one of the characters, append that character to the end of result and advance position to the next character in input.
Return result.
The step skip whitespace means that the user agent must collect a sequence of characters that are space characters. The step skip White_Space characters means that the user agent must collect a sequence of characters that are White_Space characters. In both cases, the collected characters are not used. [UNICODE]
When a user agent is to strip line breaks from a string, the user agent must remove any U+000A LINE FEED (LF) and U+000D CARRIAGE RETURN (CR) characters from that string.
The code-point length of a string is the number of Unicode code points in that string.
A number of attributes in HTML5 are boolean attributes. The presence of a boolean attribute on an element represents the true value, and the absence of the attribute represents the false value.
If the attribute is present, its value must either be the empty string or a value that is an ASCII case-insensitive match for the attribute's canonical name, with no leading or trailing whitespace.
The values "true" and "false" are not allowed on boolean attributes. To represent a false value, the attribute has to be omitted altogether.
Some attributes are defined as taking one of a finite set of keywords. Such attributes are called enumerated attributes. The keywords are each defined to map to a particular state (several keywords might map to the same state, in which case some of the keywords are synonyms of each other; additionally, some of the keywords can be said to be non-conforming, and are only in the specification for historical reasons). In addition, two default states can be given. The first is the invalid value default, the second is the missing value default.
If an enumerated attribute is specified, the attribute's value must be an ASCII case-insensitive match for one of the given keywords that are not said to be non-conforming, with no leading or trailing whitespace.
When the attribute is specified, if its value is an ASCII case-insensitive match for one of the given keywords then that keyword's state is the state that the attribute represents. If the attribute value matches none of the given keywords, but the attribute has an invalid value default, then the attribute represents that state. Otherwise, if the attribute value matches none of the keywords but there is a missing value default state defined, then that is the state represented by the attribute. Otherwise, there is no default, and invalid values must be ignored.
When the attribute is not specified, if there is a missing value default state defined, then that is the state represented by the (missing) attribute. Otherwise, the absence of the attribute means that there is no state represented.
The empty string can be one of the keywords in some
cases. For example the contenteditable
attribute has
two states: true, matching the true
keyword and the empty string, false, matching false
and all other keywords (it's the invalid
value default). It could further be thought of as having a
third state inherit, which would be the default when the
attribute is not specified at all (the missing value
default), but for various reasons that isn't the way this
specification actually defines it.
A string is a valid non-negative integer if it consists of one or more characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).
A valid non-negative integer represents the number that is represented in base ten by that string of digits.
The rules for parsing non-negative integers are as given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will either return zero, a positive integer, or an error. Leading spaces are ignored. Trailing spaces and any trailing garbage characters are ignored.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Let value have the value 0.
If position is past the end of input, return an error.
If the next character is a U+002B PLUS SIGN character (+), advance position to the next character.
If position is past the end of input, return an error.
If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), then return an error.
If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):
Return value.
A string is a valid integer if it consists of one or more characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), optionally prefixed with a U+002D HYPHEN-MINUS ("-") character.
A valid integer without a U+002D HYPHEN-MINUS ("-") prefix represents the number that is represented in base ten by that string of digits. A valid integer with a U+002D HYPHEN-MINUS ("-") prefix represents the number represented in base ten by the string of digits that follows the U+002D HYPHEN-MINUS, subtracted from zero.
The rules for parsing integers are similar to the rules for non-negative integers, and are as given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will either return an integer or an error. Leading spaces are ignored. Trailing spaces and trailing garbage characters are ignored.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Let value have the value 0.
Let sign have the value "positive".
If position is past the end of input, return an error.
If the character indicated by position (the first character) is a U+002D HYPHEN-MINUS ("-") character:
If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), then return an error.
If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):
If sign is "positive", return value, otherwise return 0-value.
A string is a valid floating point number if it consists of:
A valid floating point number represents the number obtained by multiplying the significand by ten raised to the power of the exponent, where the significand is the first number, interpreted as base ten (including the decimal point and the number after the decimal point, if any, and interpreting the significand as a negative number if the whole string starts with a U+002D HYPHEN-MINUS ("-") character and the number is not zero), and where the exponent is the number after the E, if any (interpreted as a negative number if there is a U+002D HYPHEN-MINUS ("-") character between the E and the number and the number is not zero, or else ignoring a U+002B PLUS SIGN ("+") character between the E and the number if there is one). If there is no E, then the exponent is treated as zero.
The values ±Infinity and NaN are not valid floating point numbers.
The best representation of the floating point number n is the string obtained from applying the JavaScript operator ToString to n.
The rules for parsing floating point number values are as given in the following algorithm. As with the previous algorithms, when this one is invoked, the steps must be followed in the order given, aborting at the first step that returns something. This algorithm will either return a number or an error. Leading spaces are ignored. Trailing spaces and garbage characters are ignored.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Let value have the value 1.
Let divisor have the value 1.
Let exponent have the value 1.
If position is past the end of input, return an error.
If the character indicated by position is a U+002D HYPHEN-MINUS ("-") character:
If the character indicated by position is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), then return an error.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), and interpret the resulting sequence as a base-ten integer. Multiply value by that integer.
If the character indicated by position is a U+002E FULL STOP ("."), run these substeps:
Advance position to the next character.
If position is past the end of input, or if the character indicated by position is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), then return value.
Fraction loop: Multiply divisor by ten.
Advance position to the next character.
If position is past the end of input, then return value.
If the character indicated by position is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), return to the step labeled fraction loop in these substeps.
If the character indicated by position is a U+0065 LATIN SMALL LETTER E character or a U+0045 LATIN CAPITAL LETTER E character, run these substeps:
Advance position to the next character.
If position is past the end of input, then return value.
If the character indicated by position is a U+002D HYPHEN-MINUS ("-") character:
If position is past the end of input, then return value.
Otherwise, if the character indicated by position is a U+002B PLUS SIGN ("+") character:
If position is past the end of input, then return value.
If the character indicated by position is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), then return value.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), and interpret the resulting sequence as a base-ten integer. Multiply exponent by that integer.
Multiply value by ten raised to the exponentth power.
Return value.
The algorithms described in this section are used by
the progress
and meter
elements.
A valid denominator punctuation character is one of the characters from the table below. There is a value associated with each denominator punctuation character, as shown in the table below.
Denominator Punctuation Character | Value | |
---|---|---|
U+0025 PERCENT SIGN | % | 100 |
U+066A ARABIC PERCENT SIGN | ٪ | 100 |
U+FE6A SMALL PERCENT SIGN | ﹪ | 100 |
U+FF05 FULLWIDTH PERCENT SIGN | % | 100 |
U+2030 PER MILLE SIGN | ‰ | 1000 |
U+2031 PER TEN THOUSAND SIGN | ‱ | 10000 |
The steps for finding one or two numbers of a ratio in a string are as follows:
The algorithm to find a number is as follows. It is given a string and a starting position, and returns either nothing, a number, or an error condition.
The rules for parsing dimension values are as given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will either return a number greater than or equal to 1.0, or an error; if a number is returned, then it is further categorized as either a percentage or a length.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
If position is past the end of input, return an error.
If the next character is a U+002B PLUS SIGN character (+), advance position to the next character.
Collect a sequence of characters that are U+0030 DIGIT ZERO (0) characters, and discard them.
If position is past the end of input, return an error.
If the next character is not one of U+0031 DIGIT ONE (1) .. U+0039 DIGIT NINE (9), then return an error.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), and interpret the resulting sequence as a base-ten integer. Let value be that number.
If position is past the end of input, return value as an integer.
If the next character is a U+002E FULL STOP character (.):
Advance position to the next character.
If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), then return value as an integer.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). Let length be the number of characters collected. Let fraction be the result of interpreting the collected characters as a base-ten integer, and then dividing that number by 10length.
Increment value by fraction.
If position is past the end of input, return value as a length.
If the next character is a U+0025 PERCENT SIGN character (%), return value as a percentage.
Return value as a length.
A valid list of integers is a number of valid integers separated by U+002C COMMA characters, with no other characters (e.g. no space characters). In addition, there might be restrictions on the number of integers that can be given, or on the range of values allowed.
The rules for parsing a list of integers are as follows:
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Let numbers be an initially empty list of integers. This list will be the result of this algorithm.
If there is a character in the string input at position position, and it is either a U+0020 SPACE, U+002C COMMA, or U+003B SEMICOLON character, then advance position to the next character in input, or to beyond the end of the string if there are no more characters.
If position points to beyond the end of input, return numbers and abort.
If the character in the string input at position position is a U+0020 SPACE, U+002C COMMA, or U+003B SEMICOLON character, then return to step 4.
Let negated be false.
Let value be 0.
Let started be false. This variable is set to true when the parser sees a number or a U+002D HYPHEN-MINUS ("-") character.
Let got number be false. This variable is set to true when the parser sees a number.
Let finished be false. This variable is set to true to switch parser into a mode where it ignores characters until the next separator.
Let bogus be false.
Parser: If the character in the string input at position position is:
Follow these substeps:
Follow these substeps:
Follow these substeps:
1,2,x,4
".Follow these substeps:
Follow these substeps:
Advance position to the next character in input, or to beyond the end of the string if there are no more characters.
If position points to a character (and not to beyond the end of input), jump to the big Parser step above.
If negated is true, then negate value.
If got number is true, then append value to the numbers list.
Return the numbers list and abort.
The rules for parsing a list of dimensions are as follows. These rules return a list of zero or more pairs consisting of a number and a unit, the unit being one of percentage, relative, and absolute.
Let raw input be the string being parsed.
If the last character in raw input is a U+002C COMMA character (","), then remove that character from raw input.
Split the string raw input on commas. Let raw tokens be the resulting list of tokens.
Let result be an empty list of number/unit pairs.
For each token in raw tokens, run the following substeps:
Let input be the token.
Let position be a pointer into input, initially pointing at the start of the string.
Let value be the number 0.
Let unit be absolute.
If position is past the end of input, set unit to relative and jump to the last substep.
If the character at position is a character in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), interpret the resulting sequence as an integer in base ten, and increment value by that integer.
If the character at position is a U+002E FULL STOP character (.), run these substeps:
Collect a sequence of characters consisting of space characters and characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). Let s be the resulting sequence.
Remove all space characters in s.
If s is not the empty string, run these subsubsteps:
Let length be the number of characters in s (after the spaces were removed).
Let fraction be the result of interpreting s as a base-ten integer, and then dividing that number by 10length.
Increment value by fraction.
If the character at position is a U+0025 PERCENT SIGN (%) character, then set unit to percentage.
Otherwise, if the character at position is a U+002A ASTERISK character (*), then set unit to relative.
Add an entry to result consisting of the number given by value and the unit given by unit.
Return the list result.
In the algorithms below, the number of days in month month of year year is: 31 if month is 1, 3, 5, 7, 8, 10, or 12; 30 if month is 4, 6, 9, or 11; 29 if month is 2 and year is a number divisible by 400, or if year is a number divisible by 4 but not by 100; and 28 otherwise. This takes into account leap years in the Gregorian calendar. [GREGORIAN]
The digits in the date and time syntaxes defined in this section must be characters in the range U+0030 DIGIT ZERO to U+0039 DIGIT NINE, used to express numbers in base ten.
A month consists of a specific proleptic Gregorian date with no time-zone information and no date information beyond a year and a month. [GREGORIAN]
A string is a valid month string representing a year year and month month if it consists of the following components in the given order:
The rules to parse a month string are as follows. This will either return a year and month, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Parse a month component to obtain year and month. If this returns nothing, then fail.
If position is not beyond the end of input, then fail.
Return year and month.
The rules to parse a month component, given an input string and a position, are as follows. This will either return a year and a month, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not at least four characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the year.
If year is not a number greater than zero, then fail.
If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail. Otherwise, move position forwards one character.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the month.
If month is not a number in the range 1 ≤ month ≤ 12, then fail.
Return year and month.
A date consists of a specific proleptic Gregorian date with no time-zone information, consisting of a year, a month, and a day. [GREGORIAN]
A string is a valid date string representing a year year, month month, and day day if it consists of the following components in the given order:
The rules to parse a date string are as follows. This will either return a date, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Parse a date component to obtain year, month, and day. If this returns nothing, then fail.
If position is not beyond the end of input, then fail.
Let date be the date with year year, month month, and day day.
Return date.
The rules to parse a date component, given an input string and a position, are as follows. This will either return a year, a month, and a day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Parse a month component to obtain year and month. If this returns nothing, then fail.
Let maxday be the number of days in month month of year year.
If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail. Otherwise, move position forwards one character.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the day.
If day is not a number in the range 1 ≤ month ≤ maxday, then fail.
Return year, month, and day.
A time consists of a specific time with no time-zone information, consisting of an hour, a minute, a second, and a fraction of a second.
A string is a valid time string representing an hour hour, a minute minute, and a second second if it consists of the following components in the given order:
The second component cannot be 60 or 61; leap seconds cannot be represented.
The rules to parse a time string are as follows. This will either return a time, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.
If position is not beyond the end of input, then fail.
Let time be the time with hour hour, minute minute, and second second.
Return time.
The rules to parse a time component, given an input string and a position, are as follows. This will either return an hour, a minute, and a second, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the hour.
If position is beyond the end of input or if the character at position is not a U+003A COLON character, then fail. Otherwise, move position forwards one character.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the minute.
Let second be a string with the value "0".
If position is not beyond the end of input and the character at position is a U+003A COLON, then run these substeps:
Advance position to the next character in input.
If position is beyond the end of input, or at the last character in input, or if the next two characters in input starting at position are not two characters both in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then fail.
Collect a sequence of characters that are either characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9) or U+002E FULL STOP characters. If the collected sequence has more than one U+002E FULL STOP characters, or if the last character in the sequence is a U+002E FULL STOP character, then fail. Otherwise, let the collected string be second instead of its previous value.
Interpret second as a base-ten number (possibly with a fractional part). Let second be that number instead of the string version.
If second is not a number in the range 0 ≤ second < 60, then fail.
Return hour, minute, and second.
A local date and time consists of a specific proleptic Gregorian date, consisting of a year, a month, and a day, and a time, consisting of an hour, a minute, a second, and a fraction of a second, but expressed without a time zone. [GREGORIAN]
A string is a valid local date and time string representing a date and time if it consists of the following components in the given order:
The rules to parse a local date and time string are as follows. This will either return a date and time, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Parse a date component to obtain year, month, and day. If this returns nothing, then fail.
If position is beyond the end of input or if the character at position is not a U+0054 LATIN CAPITAL LETTER T character then fail. Otherwise, move position forwards one character.
Parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.
If position is not beyond the end of input, then fail.
Let date be the date with year year, month month, and day day.
Let time be the time with hour hour, minute minute, and second second.
Return date and time.
A global date and time consists of a specific proleptic Gregorian date, consisting of a year, a month, and a day, and a time, consisting of an hour, a minute, a second, and a fraction of a second, expressed with a time zone, consisting of a number of hours and minutes. [GREGORIAN]
A string is a valid global date and time string representing a date, time, and a time-zone offset if it consists of the following components in the given order:
This format allows for time zone offsets from -23:59 to +23:59. In practice, however, the range of actual time zones is -12:00 to +14:00, and the minutes component of actual time zones is always either 00, 30, or 45.
The following are some examples of dates written as valid global date and time strings.
0037-12-13T00:00Z
"1979-10-14T12:00:00.001-04:00
"8592-01-01T02:09+02:09
"Several things are notable about these dates:
The rules to parse a global date and time string are as follows. This will either return a time in UTC, with associated time-zone information for round tripping or display purposes, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Parse a date component to obtain year, month, and day. If this returns nothing, then fail.
If position is beyond the end of input or if the character at position is not a U+0054 LATIN CAPITAL LETTER T character then fail. Otherwise, move position forwards one character.
Parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.
If position is beyond the end of input, then fail.
Parse a time-zone component to obtain timezonehours and timezoneminutes. If this returns nothing, then fail.
If position is not beyond the end of input, then fail.
Let time be the moment in time at year year, month month, day day, hours hour, minute minute, second second, subtracting timezonehours hours and timezoneminutes minutes. That moment in time is a moment in the UTC time zone.
Let timezone be timezonehours hours and timezoneminutes minutes from UTC.
Return time and timezone.
The rules to parse a time-zone component, given an input string and a position, are as follows. This will either return time-zone hours and time-zone minutes, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
If the character at position is a U+005A LATIN CAPITAL LETTER Z, then:
Let timezonehours be 0.
Let timezoneminutes be 0.
Advance position to the next character in input.
Otherwise, if the character at position is either a U+002B PLUS SIGN ("+") or a U+002D HYPHEN-MINUS ("-"), then:
If the character at position is a U+002B PLUS SIGN ("+"), let sign be "positive". Otherwise, it's a U+002D HYPHEN-MINUS ("-"); let sign be "negative".
Advance position to the next character in input.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the timezonehours.
If position is beyond the end of input or if the character at position is not a U+003A COLON character, then fail. Otherwise, move position forwards one character.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the timezoneminutes.
Return timezonehours and timezoneminutes.
A week consists of a week-year number and a week number representing a seven day period. Each week-year in this calendaring system has either 52 weeks or 53 weeks, as defined below. A week is a seven-day period. The week starting on the Gregorian date Monday December 29th 1969 (1969-12-29) is defined as week number 1 in week-year 1970. Consecutive weeks are numbered sequentially. The week before the number 1 week in a week-year is the last week in the previous week-year, and vice versa. [GREGORIAN]
A week-year with a number year that corresponds to a year year in the proleptic Gregorian calendar that has a Thursday as its first day (January 1st), and a week-year year where year is a number divisible by 400, or a number divisible by 4 but not by 100, has 53 weeks. All other week-years have 52 weeks.
The week number of the last day of a week-year with 53 weeks is 53; the week number of the last day of a week-year with 52 weeks is 52.
The week-year number of a particular day can be different than the number of the year that contains that day in the proleptic Gregorian calendar. The first week in a week-year year is the week that contains the first Thursday of the Gregorian year year.
A string is a valid week string representing a week-year year and week week if it consists of the following components in the given order:
The rules to parse a week string are as follows. This will either return a week-year number and week number, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not at least four characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the year.
If year is not a number greater than zero, then fail.
If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail. Otherwise, move position forwards one character.
If position is beyond the end of input or if the character at position is not a U+0057 LATIN CAPITAL LETTER W character, then fail. Otherwise, move position forwards one character.
Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the week.
Let maxweek be the week number of the last day of year year.
If week is not a number in the range 1 ≤ week ≤ maxweek, then fail.
If position is not beyond the end of input, then fail.
Return the week-year number year and the week number week.
A date or time string consists of either a date, a time, or a global date and time.
A string is a valid date or time string if it is also one of the following:
A string is a valid date or time string in content if it consists of zero or more White_Space characters, followed by a valid date or time string, followed by zero or more further White_Space characters.
The rules to parse a date or time string are as follows. The algorithm is invoked with a flag indicating if the in attribute variant or the in content variant is to be used. The algorithm will either return a date, a time, a global date and time, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
For the in content variant: skip White_Space characters.
Set start position to the same position as position.
Set the date present and time present flags to true.
Parse a date component to obtain year, month, and day. If this fails, then set the date present flag to false.
If date present is true, and position is not beyond the end of input, and the character at position is a U+0054 LATIN CAPITAL LETTER T character, then advance position to the next character in input.
Otherwise, if date present is true, and either position is beyond the end of input or the character at position is not a U+0054 LATIN CAPITAL LETTER T character, then set time present to false.
Otherwise, if date present is false, set position back to the same position as start position.
If the time present flag is true, then parse a time component to obtain hour, minute, and second. If this returns nothing, then set the time present flag to false.
If both the date present and time present flags are false, then fail.
If the time present flag is true, but position is beyond the end of input, then fail.
If the date present and time present flags are both true, parse a time-zone component to obtain timezonehours and timezoneminutes. If this returns nothing, then fail.
For the in content variant: skip White_Space characters.
If position is not beyond the end of input, then fail.
If the date present flag is true and the time present flag is false, then let date be the date with year year, month month, and day day, and return date.
Otherwise, if the time present flag is true and the date present flag is false, then let time be the time with hour hour, minute minute, and second second, and return time.
Otherwise, let time be the moment in time at year year, month month, day day, hours hour, minute minute, second second, subtracting timezonehours hours and timezoneminutes minutes, that moment in time being a moment in the UTC time zone; let timezone be timezonehours hours and timezoneminutes minutes from UTC; and return time and timezone.
A simple color consists of three 8-bit numbers in the range 0..255, representing the red, green, and blue components of the color respectively, in the sRGB color space. [SRGB]
A string is a valid simple color if it is exactly seven characters long, and the first character is a U+0023 NUMBER SIGN (#) character, and the remaining six characters are all in the range U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), U+0041 LATIN CAPITAL LETTER A .. U+0046 LATIN CAPITAL LETTER F, U+0061 LATIN SMALL LETTER A .. U+0066 LATIN SMALL LETTER F, with the first two digits representing the red component, the middle two digits representing the green component, and the last two digits representing the blue component, in hexadecimal.
A string is a valid lowercase simple color if it is a valid simple color and doesn't use any characters in the range U+0041 LATIN CAPITAL LETTER A .. U+0046 LATIN CAPITAL LETTER F.
The rules for parsing simple color values are as given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will either return a simple color or an error.
Let input be the string being parsed.
If input is not exactly seven characters long, then return an error.
If the first character in input is not a U+0023 NUMBER SIGN (#) character, then return an error.
If the last six characters of input are not all in the range U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), U+0041 LATIN CAPITAL LETTER A .. U+0046 LATIN CAPITAL LETTER F, U+0061 LATIN SMALL LETTER A .. U+0066 LATIN SMALL LETTER F, then return an error.
Let result be a simple color.
Interpret the second and third characters as a hexadecimal number and let the result be the red component of result.
Interpret the fourth and fifth characters as a hexadecimal number and let the result be the green component of result.
Interpret the sixth and seventh characters as a hexadecimal number and let the result be the blue component of result.
Return result.
The rules for serializing simple color values given a simple color are as given in the following algorithm:
Let result be a string consisting of a single U+0023 NUMBER SIGN (#) character.
Convert the red, green, and blue components in turn to two-digit hexadecimal numbers using the digits U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9) and U+0061 LATIN SMALL LETTER A .. U+0066 LATIN SMALL LETTER F, zero-padding if necessary, and append these numbers to result, in the order red, green, blue.
Return result, which will be a valid lowercase simple color.
Some obsolete legacy attributes parse colors in a more complicated manner, using the rules for parsing a legacy color value, which are given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will either return a simple color or an error.
Let input be the string being parsed.
If input is the empty string, then return an error.
If input is an ASCII
case-insensitive match for the string "transparent
", then return an error.
If input is an ASCII case-insensitive match for one of the keywords listed in the SVG color keywords or CSS2 System Colors sections of the CSS3 Color specification, then return the simple color corresponding to that keyword. [CSS3COLOR]
If input is four characters long, and the first character in input is a U+0023 NUMBER SIGN (#) character, and the last three characters of input are all in the range U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), U+0041 LATIN CAPITAL LETTER A .. U+0046 LATIN CAPITAL LETTER F, and U+0061 LATIN SMALL LETTER A .. U+0066 LATIN SMALL LETTER F, then run these substeps:
Let result be a simple color.
Interpret the second character of input as a hexadecimal digit; let the red component of result be the resulting number multiplied by 17.
Interpret the third character of input as a hexadecimal digit; let the green component of result be the resulting number multiplied by 17.
Interpret the fourth character of input as a hexadecimal digit; let the blue component of result be the resulting number multiplied by 17.
Return result.
Replace any characters in input that
have a Unicode code point greater than U+FFFF (i.e. any characters
that are not in the basic multilingual plane) with the
two-character string "00
".
If input is longer than 128 characters, truncate input, leaving only the first 128 characters.
If the first character in input is a U+0023 NUMBER SIGN character (#), remove it.
Replace any character in input that is not in the range U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), U+0041 LATIN CAPITAL LETTER A .. U+0046 LATIN CAPITAL LETTER F, and U+0061 LATIN SMALL LETTER A .. U+0066 LATIN SMALL LETTER F with the character U+0030 DIGIT ZERO (0).
While input's length is zero or not a multiple of three, append a U+0030 DIGIT ZERO (0) character to input.
Split input into three strings of equal length, to obtain three components. Let length be the length of those components (one third the length of input).
If length is greater than 8, then remove the leading length-8 characters in each component, and let length be 8.
While length is greater than two and the first character in each component is a U+0030 DIGIT ZERO (0) character, remove that character and reduce length by one.
If length is still greater than two, truncate each component, leaving only the first two characters in each.
Let result be a simple color.
Interpret the first component as a hexadecimal number; let the red component of result be the resulting number.
Interpret the second component as a hexadecimal number; let the green component of result be the resulting number.
Interpret the third component as a hexadecimal number; let the blue component of result be the resulting number.
Return result.
The 2D graphics context has a separate color syntax that also handles opacity.
A set of space-separated tokens is a set of zero or more words separated by one or more space characters, where words consist of any string of one or more characters, none of which are space characters.
A string containing a set of space-separated tokens may have leading or trailing space characters.
An unordered set of unique space-separated tokens is a set of space-separated tokens where none of the words are duplicated.
An ordered set of unique space-separated tokens is a set of space-separated tokens where none of the words are duplicated but where the order of the tokens is meaningful.
Sets of space-separated tokens sometimes have a defined set of allowed values. When a set of allowed values is defined, the tokens must all be from that list of allowed values; other values are non-conforming. If no such set of allowed values is provided, then all values are conforming.
When a user agent has to split a string on spaces, it must use the following algorithm:
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Let tokens be a list of tokens, initially empty.
While position is not past the end of input:
Collect a sequence of characters that are not space characters.
Add the string collected in the previous step to tokens.
Return tokens.
When a user agent has to remove a token from a string, it must use the following algorithm:
Let input be the string being modified.
Let token be the token being removed. It will not contain any space characters.
Let output be the output string, initially empty.
Let position be a pointer into input, initially pointing at the start of the string.
If position is beyond the end of input, set the string being modified to output, and abort these steps.
If the character at position is a space character:
Append the character at position to the end of output.
Increment position so it points at the next character in input.
Return to step 5 in the overall set of steps.
Otherwise, the character at position is the first character of a token. Collect a sequence of characters that are not space characters, and let that be s.
If s is exactly equal to token, then:
Skip whitespace (in input).
Remove any space characters currently at the end of output.
If position is not past the end of input, and output is not the empty string, append a single U+0020 SPACE character at the end of output.
Otherwise, append s to the end of output.
Return to step 6 in the overall set of steps.
This causes any occurrences of the token to be removed from the string, and any spaces that were surrounding the token to be collapsed to a single space, except at the start and end of the string, where such spaces are removed.
A set of comma-separated tokens is a set of zero or
more tokens each separated from the next by a single U+002C COMMA
character (,
), where tokens consist of any
string of zero or more characters, neither beginning nor ending with
space characters, nor
containing any U+002C COMMA characters (,
),
and optionally surrounded by space
characters.
For instance, the string " a ,b,,d d
" consists of four
tokens: "a", "b", the empty string, and "d d". Leading and
trailing whitespace around each token doesn't count as part of the
token, and the empty string can be a token.
Sets of comma-separated tokens sometimes have further restrictions on what consists a valid token. When such restrictions are defined, the tokens must all fit within those restrictions; other values are non-conforming. If no such restrictions are specified, then all values are conforming.
When a user agent has to split a string on commas, it must use the following algorithm:
Let input be the string being parsed.
Let position be a pointer into input, initially pointing at the start of the string.
Let tokens be a list of tokens, initially empty.
Token: If position is past the end of input, jump to the last step.
Collect a sequence of characters that are not
U+002C COMMA characters (,
). Let s be the resulting sequence (which might be the
empty string).
Remove any leading or trailing sequence of space characters from s.
Add s to tokens.
If position is not past the end of input, then the character at position is a U+002C COMMA character (,
); advance position past that
character.
Jump back to the step labeled token.
Return tokens.
A valid hash-name reference to an element of type type is a string consisting of a U+0023 NUMBER SIGN
(#
) character followed by a string which
exactly matches the value of the name
attribute of an element in the document with type type.
The rules for parsing a hash-name reference to an element of type type are as follows:
If the string being parsed does not contain a U+0023 NUMBER SIGN character, or if the first such character in the string is the last character in the string, then return null and abort these steps.
Let s be the string from the character immediately after the first U+0023 NUMBER SIGN character in the string being parsed up to the end of that string.
Return the first element of type type
that has an id
attribute whose value
is a case-sensitive match for s or
a name
attribute whose value is a
compatibility caseless match for s.
This specification defines the term URL, and defines various algorithms for dealing with URLs, because for historical reasons the rules defined by the URI and IRI specifications are not a complete description of what HTML user agents need to implement to be compatible with Web content.
A URL is a string used to identify a resource.
A URL is a valid URL if at least one of the following conditions holds:
The URL is a valid IRI reference and it has no query component. [RFC3987]
The URL is a valid IRI reference and its query component contains no unescaped non-ASCII characters. [RFC3987]
The URL is a valid IRI reference and the character encoding of
the URL's Document
is UTF-8 or UTF-16. [RFC3987]
A URL has an associated URL character encoding, determined as follows:
Document
, and the URL character
encoding is the document's character encoding.The term "URL" in this specification is used in a manner distinct from the precise technical meaning it is given in RFC 3986. Readers familiar with that RFC will find it easier to read this specification if they pretend the term "URL" as used herein is really called something else altogether. This is a willful violation of RFC 3986. RFC3986
To parse a URL url into its component parts, the user agent must use the following steps:
Strip leading and trailing space characters from url.
Parse url in the manner defined by RFC 3986, with the following exceptions:
If url doesn't match the <URI-reference> production, even after the above changes are made to the ABNF definitions, then parsing the URL fails with an error. [RFC3986]
Otherwise, parsing url was successful; the components of the URL are substrings of url defined as follows:
The substring matched by the <scheme> production, if any.
The substring matched by the <host> production, if any.
The substring matched by the <port> production, if any.
If there is a <scheme> component and a <port> component and the port given by the <port> component is different than the default port defined for the protocol given by the <scheme> component, then <hostport> is the substring that starts with the substring matched by the <host> production and ends with the substring matched by the <port> production, and includes the colon in between the two. Otherwise, it is the same as the <host> component.
The substring matched by one of the following productions, if one of them was matched:
The substring matched by the <query> production, if any.
The substring matched by the <fragment> production, if any.
The substring that follows the substring matched by the <authority> production, or the whole string if the <authority> production wasn't matched.
These parsing rules are a willful violation of RFC 3986 and RFC 3987 to handle legacy content. RFC3986 RFC3987
To resolve a URL to an absolute URL relative to either another absolute URL or an element, the user agent must use the following steps. Resolving a URL can result in an error, in which case the URL is not resolvable.
Let url be the URL being resolved.
Let encoding be the URL character encoding.
If encoding is UTF-16, then change it to UTF-8.
If the algorithm was invoked with an absolute URL to use as the base URL, let base be that absolute URL.
Otherwise, let base be the base URI of
the element, as defined by the XML Base specification, with
the base URI of the document entity being defined as the
document base URL of the Document
that
owns the element. [XMLBASE]
For the purposes of the XML Base specification, user agents
must act as if all Document
objects represented XML
documents.
It is possible for xml:base
attributes to be present
even in HTML fragments, as such attributes can be added
dynamically using script. (Such scripts would not be conforming,
however, as xml:base
attributes
are not allowed in HTML documents.)
The document base URL of a Document
is
the absolute URL obtained by running these
substeps:
Let fallback base url be the document's address.
If fallback base url is
about:blank
, and the Document
's
browsing context has a creator browsing
context, then let fallback base url
be the document base URL of the creator
Document
instead.
If there is no base
element that is both a
child of the head
element and has an
href
attribute, then the
document base URL is fallback base
url.
Otherwise, let url be the value of the
href
attribute of the first
such element.
Resolve url relative to fallback base
url (thus, the base
href
attribute isn't affected by
xml:base
attributes).
The document base URL is the result of the previous step if it was successful; otherwise it is fallback base url.
Parse url into its component parts.
If parsing url resulted in a <host> component, then replace the matching substring of url with the string that results from expanding any sequences of percent-encoded octets in that component that are valid UTF-8 sequences into Unicode characters as defined by UTF-8.
If any percent-encoded octets in that component are not valid UTF-8 sequences, then return an error and abort these steps.
Apply the IDNA ToASCII algorithm to the matching substring, with both the AllowUnassigned and UseSTD3ASCIIRules flags set. Replace the matching substring with the result of the ToASCII algorithm.
If ToASCII fails to convert one of the components of the string, e.g. because it is too long or because it contains invalid characters, then return an error and abort these steps. [RFC3490]
If parsing url resulted in a <path> component, then replace the matching substring of url with the string that results from applying the following steps to each character other than U+0025 PERCENT SIGN (%) that doesn't match the original <path> production defined in RFC 3986:
For instance if url was "//example.com/a^b☺c%FFd%z/?e
", then the
<path> component's substring
would be "/a^b☺c%FFd%z/
" and the two
characters that would have to be escaped would be "^
" and "☺
". The
result after this step was applied would therefore be that url now had the value "//example.com/a%5Eb%E2%98%BAc%FFd%z/?e
".
If parsing url resulted in a <query> component, then replace the matching substring of url with the string that results from applying the following steps to each character other than U+0025 PERCENT SIGN (%) that doesn't match the original <query> production defined in RFC 3986:
Apply the algorithm described in RFC 3986 section 5.2 Relative Resolution, using url as the potentially relative URI reference (R), and base as the base URI (Base). [RFC3986]
Apply any relevant conformance criteria of RFC 3986 and RFC 3987, returning an error and aborting these steps if appropriate. [RFC3986] [RFC3987]
For instance, if an absolute URI that would be
returned by the above algorithm violates the restrictions specific
to its scheme, e.g. a data:
URI using the
"//
" server-based naming authority syntax,
then user agents are to treat this as an error instead.
Let result be the target URI (T) returned by the Relative Resolution algorithm.
If result uses a scheme with a server-based naming authority, replace all U+005C REVERSE SOLIDUS (\) characters in result with U+002F SOLIDUS (/) characters.
Return result.
A URL is an absolute URL if resolving it results in the same URL without an error.
When an xml:base
attribute
changes, the attribute's element, and all descendant elements, are
affected by a base URL change.
When a document's document base URL changes, all elements in that document are affected by a base URL change.
When an element is moved from one document to another, if the two documents have different base URLs, then that element and all its descendants are affected by a base URL change.
When an element is affected by a base URL change, it must act as described in the following list:
If the absolute URL identified by the hyperlink is
being shown to the user, or if any data derived from that URL is
affecting the display, then the href
attribute should be re-resolved relative to the element
and the UI updated appropriately.
For example, the CSS :link
/:visited
pseudo-classes might have
been affected.
If the hyperlink has a ping
attribute and its absolute URL(s) are being shown to the
user, then the ping
attribute's tokens should be re-resolved relative to the element and the UI updated
appropriately.
blockquote
, q
,
ins
, or del
element with a cite
attributeIf the absolute URL identified by the cite
attribute is being shown to the user, or if
any data derived from that URL is affecting the display, then the
URL should be re-resolved relative to the element and the UI updated
appropriately.
The element is not directly affected.
Changing the base URL doesn't affect the image
displayed by img
elements, although subsequent
accesses of the src
DOM attribute
from script will return a new absolute URL that might
no longer correspond to the image being shown.
An interface that has a complement of URL decomposition attributes will have seven attributes with the following definitions:
attribute DOMString protocol; attribute DOMString host; attribute DOMString hostname; attribute DOMString port; attribute DOMString pathname; attribute DOMString search; attribute DOMString hash;
protocol
[ = value ]Returns the current scheme of the underlying URL.
Can be set, to change the underlying URL's scheme.
host
[ = value ]Returns the current host and port (if it's not the default port) in the underlying URL.
Can be set, to change the underlying URL's host and port.
The host and the port are separated by a colon. The port part, if omitted, will be assumed to be the current scheme's default port.
hostname
[ = value ]Returns the current host in the underlying URL.
Can be set, to change the underlying URL's host.
port
[ = value ]Returns the current port in the underlying URL.
Can be set, to change the underlying URL's port.
pathname
[ = value ]Returns the current path in the underlying URL.
Can be set, to change the underlying URL's path.
search
[ = value ]Returns the current query component in the underlying URL.
Can be set, to change the underlying URL's query component.
hash
[ = value ]Returns the current fragment identifier in the underlying URL.
Can be set, to change the underlying URL's fragment identifier.
The attributes defined to be URL decomposition attributes must act as described for the attributes with the same corresponding names in this section.
In addition, an interface with a complement of URL decomposition attributes will define an input, which is a URL that the attributes act on, and a common setter action, which is a set of steps invoked when any of the attributes' setters are invoked.
The seven URL decomposition attributes have similar requirements.
On getting, if the input is an absolute URL that fulfills the condition given in the "getter condition" column corresponding to the attribute in the table below, the user agent must return the part of the input URL given in the "component" column, with any prefixes specified in the "prefix" column appropriately added to the start of the string and any suffixes specified in the "suffix" column appropriately added to the end of the string. Otherwise, the attribute must return the empty string.
On setting, the new value must first be mutated as described by the "setter preprocessor" column, then mutated by %-escaping any characters in the new value that are not valid in the relevant component as given by the "component" column. Then, if the input is an absolute URL and the resulting new value fulfills the condition given in the "setter condition" column, the user agent must make a new string output by replacing the component of the URL given by the "component" column in the input URL with the new value; otherwise, the user agent must let output be equal to the input. Finally, the user agent must invoke the common setter action with the value of output.
When replacing a component in the URL, if the component is part of an optional group in the URL syntax consisting of a character followed by the component, the component (including its prefix character) must be included even if the new value is the empty string.
The previous paragraph applies in particular to the
":
" before a <port> component, the "?
" before a <query> component, and the "#
" before a <fragment> component.
For the purposes of the above definitions, URLs must be parsed using the URL parsing rules defined in this specification.
Attribute | Component | Getter Condition | Prefix | Suffix | Setter Preprocessor | Setter Condition |
---|---|---|---|---|---|---|
protocol
| <scheme> | — | — | U+003A COLON (": ")
| Remove all trailing U+003A COLON (": ") characters
| The new value is not the empty string |
host
| <hostport> | input is hierarchical and uses a server-based naming authority | — | — | — | The new value is not the empty string and input is hierarchical and uses a server-based naming authority |
hostname
| <host> | input is hierarchical and uses a server-based naming authority | — | — | Remove all leading U+002F SOLIDUS ("/ ") characters
| The new value is not the empty string and input is hierarchical and uses a server-based naming authority |
port
| <port> | input is hierarchical, uses a server-based naming authority, and contained a <port> component (possibly an empty one) | — | — | Remove any characters in the new value that are not in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE. If the resulting string is empty, set it to a single U+0030 DIGIT ZERO character ('0'). | input is hierarchical and uses a server-based naming authority |
pathname
| <path> | input is hierarchical | — | — | If it has no leading U+002F SOLIDUS ("/ ") character, prepend a U+002F SOLIDUS ("/ ") character to the new value
| — |
search
| <query> | input is hierarchical, and contained a <query> component (possibly an empty one) | U+003F QUESTION MARK ("? ")
| — | Remove one leading U+003F QUESTION MARK ("? ") character, if any
| — |
hash
| <fragment> | input contained a <fragment> component (possibly an empty one) | U+0023 NUMBER SIGN ("# ")
| — | Remove one leading U+0023 NUMBER SIGN ("# ") character, if any
| — |
The table below demonstrates how the getter condition for search
results in different results
depending on the exact original syntax of the URL:
Input URL | search value
| Explanation |
---|---|---|
http://example.com/
| empty string | No <query> component in input URL. |
http://example.com/?
| ?
| There is a <query> component, but it is empty. The question mark in the resulting value is the prefix. |
http://example.com/?test
| ?test
| The <query> component has the value "test ".
|
http://example.com/?test#
| ?test
| The (empty) <fragment> component is not part of the <query> component. |
When a user agent is to fetch a resource, the following steps must be run:
If the resource is identified by the URL
about:blank
, then return the empty string
and abort these steps.
Perform the remaining steps asynchronously.
If the resource is identified by an absolute URL, and the resource is to be obtained using a idempotent action (such as an HTTP GET or equivalent), and it is already being downloaded for other reasons (e.g. another invocation of this algorithm), and the user agent is configured such that it is to reuse the data from the existing download instead of initiating a new one, then use the results of the existing download instead of starting a new one.
Otherwise, at a time convenient to the user and the user agent,
download (or otherwise obtain) the resource, applying the
semantics of the relevant specifications (e.g. performing an HTTP
GET or POST operation, or reading the file from disk, following
redirects, dereferencing javascript:
URLs, etc).
If there are cookies to be set, then the user agent must run the following substeps:
Wait until ownership of the storage mutex can be taken by this instance of the fetching algorithm.
Take ownership of the storage mutex.
Update the cookies. [COOKIES]
Release the storage mutex so that it is once again free.
When the resource is available, or if there is an error of some description, queue a task that uses the resource as appropriate. If the resource can be processed incrementally, as, for instance, with a progressively interlaced JPEG or an HTML file, additional tasks may be queued to process the data as it is downloaded. The task source for these tasks is the networking task source.
The application cache processing model introduces some changes to the networking model to handle the returning of cached resources.
The navigation processing model handles redirects itself, overriding the redirection handling that would be done by the fetching algorithm.
Whether the type sniffing rules apply to the fetched resource depends on the algorithm that invokes the rules — they are not always applicable.
User agents can implement a variety of transfer protocols, but this specification mostly defines behavior in terms of HTTP. [HTTP]
The HTTP GET method is equivalent to the default retrieval action of the protocol. For example, RETR in FTP. Such actions are idempotent and safe, in HTTP terms.
The HTTP response codes are equivalent to statuses in other protocols that have the same basic meanings. For example, a "file not found" error is equivalent to a 404 code, a server error is equivalent to a 5xx code, and so on.
The HTTP headers are equivalent to fields in other protocols that have the same basic meaning. For example, the HTTP authentication headers are equivalent to the authentication aspects of the FTP protocol.
If there are any specific questions with what should be considered equivalent to what, let me know, and I'll make it more explicit for those cases.
Anything in this specification that refers to HTTP also applies
to HTTP-over-TLS, as represented by URLs
representing the https
scheme.
User agents should report certificate errors to the user and must either refuse to download resources sent with erroneous certificates or must act as if such resources were in fact served with no encryption.
Not doing so can result in users not noticing man-in-the-middle attacks.
If a user connects to a server with a self-signed certificate, the user agent could allow the connection but just act as if there had been no encryption. If the user agent instead allowed the user to override the problem and then displayed the page as if it was fully and safely encrypted, the user could be easily tricked into accepting man-in-the-middle connections.
If a user connects to a server with full encryption, but the page then refers to an external resource that has an expired certificate, then the user agent will act as if the resource was unavailable, possibly also reporting the problem to the user. If the user agent instead allowed the resource to be used, then an attacker could just look for "secure" sites that used resources from a different host and only apply man-in-the-middle attacks to that host, for example taking over scripts in the page.
It is imperative that the rules in this section be followed exactly. When a user agent uses different heuristics for content type detection than the server expects, security problems can occur. For example, if a server believes that the client will treat a contributed file as an image (and thus treat it as benign), but a Web browser believes the content to be HTML (and thus execute any scripts contained therein), the end user can be exposed to malicious content, making the user vulnerable to cookie theft attacks and other cross-site scripting attacks.
What explicit Content-Type metadata is associated with the resource (the resource's type information) depends on the protocol that was used to fetch the resource.
For HTTP resources, only the first Content-Type HTTP header, if any, contributes any type information; the explicit type of the resource is then the value of that header, interpreted as described by the HTTP specifications. If the Content-Type HTTP header is present but the value of the first such header cannot be interpreted as described by the HTTP specifications (e.g. because its value doesn't contain a U+002F SOLIDUS ('/') character), then the resource has no type information (even if there are multiple Content-Type HTTP headers and one of the other ones is syntactically correct). [HTTP]
For resources fetched from the file system, user agents should use platform-specific conventions, e.g. operating system extension/type mappings.
Extensions must not be used for determining resource types for resources fetched over HTTP.
For resources fetched over most other protocols, e.g. FTP, there is no type information.
The algorithm for extracting an encoding from a Content-Type, given a string s, is as follows. It either returns an encoding or nothing.
Find the first seven characters in s that are an ASCII case-insensitive match for the word "charset". If no such match is found, return nothing.
Skip any U+0009, U+000A, U+000C, U+000D, or U+0020 characters that immediately follow the word 'charset' (there might not be any).
If the next character is not a U+003D EQUALS SIGN ('='), return nothing.
Skip any U+0009, U+000A, U+000C, U+000D, or U+0020 characters that immediately follow the equals sign (there might not be any).
Process the next character as follows:
Return the string between this character and the next earliest occurrence of this character.
Return nothing.
Return the string from this character to the first U+0009, U+000A, U+000C, U+000D, U+0020, or U+003B character or the end of s, whichever comes first.
The above algorithm is a willful violation of the HTTP specification. [HTTP]
The sniffed type of a resource must be found as follows:
If the user agent is configured to strictly obey Content-Type headers for this resource, then jump to the last step in this set of steps.
If the resource was fetched over an HTTP protocol and there is an HTTP Content-Type header and the value of the first such header has bytes that exactly match one of the following lines:
Bytes in Hexadecimal | Textual representation |
---|---|
74 65 78 74 2f 70 6c 61 69 6e | text/plain
|
74 65 78 74 2f 70 6c 61 69 6e 3b 20 63 68 61 72 73 65 74 3d 49 53 4f 2d 38 38 35 39 2d 31 | text/plain; charset=ISO-8859-1
|
74 65 78 74 2f 70 6c 61 69 6e 3b 20 63 68 61 72 73 65 74 3d 69 73 6f 2d 38 38 35 39 2d 31 | text/plain; charset=iso-8859-1
|
74 65 78 74 2f 70 6c 61 69 6e 3b 20 63 68 61 72 73 65 74 3d 55 54 46 2d 38 | text/plain; charset=UTF-8
|
...then jump to the text or binary section below.
Let official type be the type given by the Content-Type metadata for the resource, ignoring parameters. If there is no such type, jump to the unknown type step below. Comparisons with this type, as defined by MIME specifications, are done in an ASCII case-insensitive manner. [RFC2046]
If official type is "unknown/unknown" or "application/unknown", jump to the unknown type step below.
If official type ends in "+xml", or if it is either "text/xml" or "application/xml", then the sniffed type of the resource is official type; return that and abort these steps.
If official type is an image type supported by the user agent (e.g. "image/png", "image/gif", "image/jpeg", etc), then jump to the images section below, passing it the official type.
If official type is "text/html", then jump to the feed or HTML section below.
The sniffed type of the resource is official type.
The user agent may wait for 512 or more bytes of the resource to be available.
Let n be the smaller of either 512 or the number of bytes already available.
If n is 4 or more, and the first bytes of the resource match one of the following byte sets:
Bytes in Hexadecimal | Description |
---|---|
FE FF | UTF-16BE BOM |
FF FE | UTF-16LE BOM |
EF BB BF | UTF-8 BOM |
...then the sniffed type of the resource is "text/plain". Abort these steps.
If none of the first n bytes of the resource are binary data bytes then the sniffed type of the resource is "text/plain". Abort these steps.
If the first bytes of the resource match one of the byte sequences in the "pattern" column of the table in the unknown type section below, ignoring any rows whose cell in the "security" column says "scriptable" (or "n/a"), then the sniffed type of the resource is the type given in the corresponding cell in the "sniffed type" column on that row; abort these steps.
It is critical that this step not ever return a scriptable type (e.g. text/html), as otherwise that would allow a privilege escalation attack.
Otherwise, the sniffed type of the resource is "application/octet-stream".
Bytes covered by the following ranges are binary data bytes:
The user agent may wait for 512 or more bytes of the resource to be available.
Let stream length be the smaller of either 512 or the number of bytes already available.
For each row in the table below:
Let indexpattern be an index into the mask and pattern byte strings of the row.
Let indexstream be an index into the byte stream being examined.
Loop: If indexstream points beyond the end of the byte stream, then this row doesn't match, skip this row.
Examine the indexstreamth byte of the byte stream as follows:
If the "and" operator, applied to the indexstreamth byte of the stream and the indexpatternth byte of the mask, yield a value different that the indexpatternth byte of the pattern, then skip this row.
Otherwise, increment indexpattern to the next byte in the mask and pattern and indexstream to the next byte in the byte stream.
"WS" means "whitespace", and allows insignificant whitespace to be skipped when sniffing for a type signature.
If the indexstreamth byte of the stream is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space), then increment only the indexstream to the next byte in the byte stream.
Otherwise, increment only the indexpattern to the next byte in the mask and pattern.
If indexpattern does not point beyond the end of the mask and pattern byte strings, then jump back to the loop step in this algorithm.
Otherwise, the sniffed type of the resource is the type given in the cell of the third column in that row; abort these steps.
If none of the first n bytes of the resource are binary data bytes then the sniffed type of the resource is "text/plain". Abort these steps.
Otherwise, the sniffed type of the resource is "application/octet-stream".
The table used by the above algorithm is:
Bytes in Hexadecimal | Sniffed type | Security | Comment | |
---|---|---|---|---|
Mask | Pattern | |||
FF FF DF DF DF DF DF DF DF FF DF DF DF DF | 3C 21 44 4F 43 54 59 50 45 20 48 54 4D 4C | text/html | Scriptable | The string "<!DOCTYPE HTML " in US-ASCII or compatible encodings, case-insensitively.
|
FF FF DF DF DF DF | WS 3C 48 54 4D 4C | text/html | Scriptable | The string "<HTML " in US-ASCII or compatible encodings, case-insensitively, possibly with leading spaces.
|
FF FF DF DF DF DF | WS 3C 48 45 41 44 | text/html | Scriptable | The string "<HEAD " in US-ASCII or compatible encodings, case-insensitively, possibly with leading spaces.
|
FF FF DF DF DF DF DF DF | WS 3C 53 43 52 49 50 54 | text/html | Scriptable | The string "<SCRIPT " in US-ASCII or compatible encodings, case-insensitively, possibly with leading spaces.
|
FF FF FF FF FF | 25 50 44 46 2D | application/pdf | Scriptable | The string "%PDF- ", the PDF signature.
|
FF FF FF FF FF FF FF FF FF FF FF | 25 21 50 53 2D 41 64 6F 62 65 2D | application/postscript | Safe | The string "%!PS-Adobe- ", the PostScript signature.
|
FF FF 00 00 | FE FF 00 00 | text/plain | n/a | UTF-16BE BOM |
FF FF 00 00 | FF FF 00 00 | text/plain | n/a | UTF-16LE BOM |
FF FF FF 00 | EF BB BF 00 | text/plain | n/a | UTF-8 BOM |
FF FF FF FF FF FF | 47 49 46 38 37 61 | image/gif | Safe | The string "GIF87a ", a GIF signature.
|
FF FF FF FF FF FF | 47 49 46 38 39 61 | image/gif | Safe | The string "GIF89a ", a GIF signature.
|
FF FF FF FF FF FF FF FF | 89 50 4E 47 0D 0A 1A 0A | image/png | Safe | The PNG signature. |
FF FF FF | FF D8 FF | image/jpeg | Safe | A JPEG SOI marker followed by the first byte of another marker. |
FF FF | 42 4D | image/bmp | Safe | The string "BM ", a BMP signature.
|
FF FF FF FF | 00 00 01 00 | image/vnd.microsoft.icon | Safe | A 0 word following by a 1 word, a Windows Icon file format signature. |
I'd like to add types like MPEG, AVI, Flash, Java, etc, to the above table.
User agents may support further types if desired, by implicitly adding to the above table. However, user agents should not use any other patterns for types already mentioned in the table above, as this could then be used for privilege escalation (where, e.g., a server uses the above table to determine that content is not HTML and thus safe from XSS attacks, but then a user agent detects it as HTML anyway and allows script to execute).
The column marked "security" is used by the algorithm in the
"text or binary" section, to avoid sniffing text/plain
content as a type that can be used for a
privilege escalation attack.
If the resource's official type is "image/svg+xml", then the sniffed type of the resource is its official type (an XML type).
Otherwise, if the first bytes of the resource match one of the byte sequences in the first column of the following table, then the sniffed type of the resource is the type given in the corresponding cell in the second column on the same row:
Bytes in Hexadecimal | Sniffed type | Comment |
---|---|---|
47 49 46 38 37 61 | image/gif | The string "GIF87a ", a GIF signature.
|
47 49 46 38 39 61 | image/gif | The string "GIF89a ", a GIF signature.
|
89 50 4E 47 0D 0A 1A 0A | image/png | The PNG signature. |
FF D8 FF | image/jpeg | A JPEG SOI marker followed by the first byte of another marker. |
42 4D | image/bmp | The string "BM ", a BMP signature.
|
00 00 01 00 | image/vnd.microsoft.icon | A 0 word following by a 1 word, a Windows Icon file format signature. |
Otherwise, the sniffed type of the resource is the same as its official type.
The user agent may wait for 512 or more bytes of the resource to be available.
Let s be the stream of bytes, and let s[i] represent the byte in s with position i, treating s as zero-indexed (so the first byte is at i=0).
If at any point this algorithm requires the user agent to determine the value of a byte in s which is not yet available, or which is past the first 512 bytes of the resource, or which is beyond the end of the resource, the user agent must stop this algorithm, and assume that the sniffed type of the resource is "text/html".
User agents are allowed, by the first step of this algorithm, to wait until the first 512 bytes of the resource are available.
Initialize pos to 0.
If s[0] is 0xEF, s[1] is 0xBB, and s[2] is 0xBF, then set pos to 3. (This skips over a leading UTF-8 BOM, if any.)
Loop start: Examine s[pos].
<
")If the bytes with positions pos to
pos+2 in s are
exactly equal to 0x21, 0x2D, 0x2D respectively (ASCII for "!--
"), then:
-->
"), then increase pos
by 3 and jump back to the previous step (the step labeled
loop start) in the overall algorithm in this section.If s[pos] is 0x21 (ASCII "!
"):
If s[pos] is 0x3F (ASCII "?
"):
Otherwise, if the bytes in s starting at pos match any of the sequences of bytes in the first column of the following table, then the user agent must follow the steps given in the corresponding cell in the second column of the same row.
Bytes in Hexadecimal | Requirement | Comment |
---|---|---|
72 73 73 | The sniffed type of the resource is "application/rss+xml"; abort these steps | The three ASCII characters "rss "
|
66 65 65 64 | The sniffed type of the resource is "application/atom+xml"; abort these steps | The four ASCII characters "feed "
|
72 64 66 3A 52 44 46 | Continue to the next step in this algorithm | The ASCII characters "rdf:RDF "
|
If none of the byte sequences above match the bytes in s starting at pos, then the sniffed type of the resource is "text/html". Abort these steps.
If, before the next ">", you find two xmlns* attributes with http://www.w3.org/1999/02/22-rdf-syntax-ns# and http://purl.org/rss/1.0/ as the namespaces, then the sniffed type of the resource is "application/rss+xml", abort these steps. (maybe we only need to check for http://purl.org/rss/1.0/ actually)
Otherwise, the sniffed type of the resource is "text/html".
For efficiency reasons, implementations may wish to implement this algorithm and the algorithm for detecting the character encoding of HTML documents in parallel.
User agents must at a minimum support the UTF-8 and Windows-1252 encodings, but may support more.
It is not unusual for Web browsers to support dozens if not upwards of a hundred distinct character encodings.
User agents must support the preferred MIME name of every character encoding they support that has a preferred MIME name, and should support all the IANA-registered aliases. [IANACHARSET]
When comparing a string specifying a character encoding with the name or alias of a character encoding to determine if they are equal, user agents must use the Charset Alias Matching rules defined in Unicode Technical Standard #22. [UTS22]
For instance, "GB_2312-80" and "g.b.2312(80)" are considered equivalent names.
When a user agent would otherwise use an encoding given in the first column of the following table to either convert content to Unicode characters or convert Unicode characters to bytes, it must instead use the encoding given in the cell in the second column of the same row. When a byte or sequence of bytes is treated differently due to this encoding aliasing, it is said to have been misinterpreted for compatibility.
Input encoding | Replacement encoding | References |
---|---|---|
EUC-KR | Windows-949 | [EUCKR] [WIN949] |
GB2312 | GBK | [GB2312] [GBK] |
GB_2312-80 | GBK | [RFC1345] [GBK] |
ISO-8859-1 | Windows-1252 | [RFC1345] [WIN1252] |
ISO-8859-9 | Windows-1254 | [RFC1345] [WIN1254] |
ISO-8859-11 | Windows-874 | [ISO885911] [WIN874] |
KS_C_5601-1987 | Windows-949 | [RFC1345] [WIN949] |
TIS-620 | Windows-874 | [TIS620] [WIN874] |
US-ASCII | Windows-1252 | [RFC1345] [WIN1252] |
x-x-big5 | Big5 | [BIG5] |
The requirement to treat certain encodings as other encodings according to the table above is a willful violation of the W3C Character Model specification. [CHARMOD]
User agents must not support the CESU-8, UTF-7, BOCU-1 and SCSU encodings. [CESU8] [UTF7] [BOCU1] [SCSU]
Support for encodings based on EBCDIC is not recommended. This encoding is rarely used for publicly-facing Web content.
Support for UTF-32 is not recommended. This encoding is rarely used, and frequently implemented incorrectly.
This specification does not make any attempt to support EBCDIC-based encodings and UTF-32 in its algorithms; support and use of these encodings can thus lead to unexpected behavior in implementations of this specification.
Some DOM attributes are defined to reflect a particular content attribute. This means that on getting, the DOM attribute returns the current value of the content attribute, and on setting, the DOM attribute changes the value of the content attribute to the given value.
A list of reflecting DOM attributes and their corresponding content attributes is given in the index.
If a reflecting DOM attribute is a DOMString
attribute whose content attribute is defined to contain a
URL, then on getting, the DOM attribute must resolve the value of the content
attribute relative to the element and return the resulting
absolute URL if that was successful, or the empty
string otherwise; and on setting, must set the content attribute to
the specified literal value. If the content attribute is absent, the
DOM attribute must return the default value, if the content
attribute has one, or else the empty string.
If a reflecting DOM attribute is a DOMString
attribute whose content attribute is defined to contain one or more
URLs, then on getting, the DOM attribute
must split the content
attribute on spaces and return the concatenation of resolving each token URL to an
absolute URL relative to the element, with a single
U+0020 SPACE character between each URL, ignoring any tokens that
did not resolve successfully. If the content attribute is absent,
the DOM attribute must return the default value, if the content
attribute has one, or else the empty string. On setting, the DOM
attribute must set the content attribute to the specified literal
value.
If a reflecting DOM attribute is a DOMString
whose
content attribute is an enumerated attribute, and the
DOM attribute is limited to only known values, then, on
getting, the DOM attribute must return the conforming value
associated with the state the attribute is in (in its canonical
case), or the empty string if the attribute is in a state that has
no associated keyword value; and on setting, if the new value is an
ASCII case-insensitive match for one of the keywords
given for that attribute, then the content attribute must be set to
the conforming value associated with the state that the attribute
would be in if set to the given new value, otherwise, if the new
value is the empty string, then the content attribute must be
removed, otherwise, the setter must raise a SYNTAX_ERR
exception.
If a reflecting DOM attribute is a DOMString
but
doesn't fall into any of the above categories, then the getting and
setting must be done in a transparent, case-preserving manner.
If a reflecting DOM attribute is a boolean attribute, then on getting the DOM attribute must return true if the attribute is set, and false if it is absent. On setting, the content attribute must be removed if the DOM attribute is set to false, and must be set to have the same value as its name if the DOM attribute is set to true. (This corresponds to the rules for boolean content attributes.)
If a reflecting DOM attribute is a signed integer type
(long
) then, on getting, the content attribute must be
parsed according to the rules for parsing signed integers, and if that is
successful, and the value is in the range of the DOM attribute's
type, the resulting value must be returned. If, on the other hand,
it fails or returns an out of range value, or if the attribute is
absent, then the default value must be returned instead, or 0 if
there is no default value. On setting, the given value must be
converted to the shortest possible string representing the number as
a valid integer in base ten and then that string must
be used as the new content attribute value.
If a reflecting DOM attribute is an unsigned integer
type (unsigned long
) then, on getting, the content
attribute must be parsed according to the rules for parsing
non-negative integers, and if that is successful, and the
value is in the range of the DOM attribute's type, the resulting
value must be returned. If, on the other hand, it fails or returns
an out of range value, or if the attribute is absent, the default
value must be returned instead, or 0 if there is no default
value. On setting, the given value must be converted to the shortest
possible string representing the number as a valid
non-negative integer in base ten and then that string must be
used as the new content attribute value.
If a reflecting DOM attribute is an unsigned integer type
(unsigned long
) that is limited to only positive
non-zero numbers, then the behavior is similar to the previous
case, but zero is not allowed. On getting, the content attribute
must first be parsed according to the rules for parsing
non-negative integers, and if that is successful, and the
value is in the range of the DOM attribute's type, the resulting
value must be returned. If, on the other hand, it fails or returns
an out of range value, or if the attribute is absent, the default
value must be returned instead, or 1 if there is no default
value. On setting, if the value is zero, the user agent must fire an
INDEX_SIZE_ERR
exception. Otherwise, the given value
must be converted to the shortest possible string representing the
number as a valid non-negative integer in base ten and
then that string must be used as the new content attribute
value.
If a reflecting DOM attribute is a floating point number type
(float
) and it doesn't fall into one of the earlier
categories, then, on getting, the content attribute must be parsed
according to the rules for parsing floating point number
values, and if that is successful, and the value is in the
range of the DOM attribute's type, the resulting value must be
returned. If, on the other hand, it fails or returns an out of range
value, or if the attribute is absent, the default value must be
returned instead, or 0.0 if there is no default value. On setting,
the given value must be converted to the best representation
of the floating point number and then that string must be
used as the new content attribute value.
The values ±Infinity and NaN throw an exception on setting, as defined by WebIDL. [WEBIDL]
If a reflecting DOM attribute is of the type
DOMTokenList
, then on getting it must return a
DOMTokenList
object whose underlying string is the
element's corresponding content attribute. When the
DOMTokenList
object mutates its underlying string, the
content attribute must itself be immediately mutated. When the
attribute is absent, then the string represented by the
DOMTokenList
object is the empty string; when the
object mutates this empty string, the user agent must first add the
corresponding content attribute, and then mutate that attribute
instead. DOMTokenList
attributes are always
read-only. The same DOMTokenList
object must be
returned every time for each attribute.
If a reflecting DOM attribute has the type
HTMLElement
, or an interface that descends from
HTMLElement
, then, on getting, it must run the
following algorithm (stopping at the first point where a value is
returned):
document.getElementById()
method would find if it
was passed as its argument the current value of the corresponding
content attribute.On setting, if the given element has an id
attribute, then the content attribute must
be set to the value of that id
attribute. Otherwise, the DOM attribute must be set to the empty
string.
The HTMLCollection
,
HTMLFormControlsCollection
, and
HTMLOptionsCollection
interfaces represent various
lists of DOM nodes. Collectively, objects implementing these
interfaces are called collections.
When a collection is created, a filter and a root are associated with the collection.
For example, when the HTMLCollection
object for the document.images
attribute is
created, it is associated with a filter that selects only
img
elements, and rooted at the root of the
document.
The collection then represents a live view of the subtree rooted at the collection's root, containing only nodes that match the given filter. The view is linear. In the absence of specific requirements to the contrary, the nodes within the collection must be sorted in tree order.
The rows
list is
not in tree order.
An attribute that returns a collection must return the same object every time it is retrieved.
The HTMLCollection
interface represents a generic
collection of elements.
[Callable=namedItem] interface HTMLCollection { readonly attribute unsigned long length; [IndexGetter] Element item(in unsigned long index); [NameGetter] Element namedItem(in DOMString name); };
length
Returns the number of elements in the collection.
item
(index)Returns the item with index index from the collection. The items are sorted in tree order.
Returns null if index is out of range.
namedItem
(name)Returns the first item with ID or name name from the collection.
Returns null if no element with that ID or name could be found.
Only a
, applet
, area
,
embed
, form
, frame
,
frameset
, iframe
, img
, and
object
elements can have a name for the purpose of
this method; their name is given by the value of their name
attribute.
The object's indices of the supported indexed properties are the numbers in the range zero to one less than the number of nodes represented by the collection. If there are no such elements, then there are no supported indexed properties.
The length
attribute must return the number of nodes represented by the
collection.
The item(index)
method must return the indexth node in the collection. If there is no indexth node in the collection, then the method must
return null.
The names of the supported named properties consist
of the values of the name
attributes of each
a
, applet
, area
,
embed
, form
, frame
,
frameset
, iframe
, img
, and
object
element represented by the
collection with a name
attribute, plus
the list of IDs that the elements represented by the
collection have.
The namedItem(key)
method must return the first node
in the collection that matches the following requirements:
a
, applet
,
area
, embed
, form
,
frame
, frameset
, iframe
,
img
, or object
element with a name
attribute equal to key,
or,If no such elements are found, then the method must return null.
The HTMLFormControlsCollection
interface represents
a collection of listed elements in form
and fieldset
elements.
[Callable=namedItem]
interface HTMLFormControlsCollection {
readonly attribute unsigned long length;
[IndexGetter] HTMLElement item(in unsigned long index);
[NameGetter] Object namedItem(in DOMString name);
};
interface RadioNodeList : NodeList {
attribute DOMString value;
};
length
Returns the number of elements in the collection.
item
(index)Returns the item with index index from the collection. The items are sorted in tree order.
Returns null if index is out of range.
namedItem
(name)namedItem
(name)Returns the item with ID or name
name from the collection.
If there are multiple matching items, then a RadioNodeList
object containing all those elements is returned.
Returns null if no element with that ID or name
could be found.
Returns the value of the first checked radio button represented by the object.
Can be set, to check the first radio button with the given value represented by the object.
The object's indices of the supported indexed properties are the numbers in the range zero to one less than the number of nodes represented by the collection. If there are no such elements, then there are no supported indexed properties.
The length
attribute must return the number of nodes represented by the
collection.
The item(index)
method must return the indexth node in the collection. If there is no indexth node in the collection, then the method must
return null.
The names of the supported named properties consist
of the values of all the id
and name
attributes of all the elements
represented by the collection.
The namedItem(name)
method must act according to the
following algorithm:
id
attribute or a name
attribute equal to name, then return that node and stop the
algorithm.id
attribute or a name
attribute equal to name, then return null and stop the algorithm.RadioNodeList
object
representing a live view of the
HTMLFormControlsCollection
object, further filtered so
that the only nodes in the RadioNodeList
object are
those that have either an id
attribute
or a name
attribute equal to name. The nodes in the RadioNodeList
object must be sorted in tree order.RadioNodeList
object.A members of the RadioNodeList
interface inherited
from the NodeList
interface must behave as they would
on a NodeList
object.
The value
DOM attribute on the RadioNodeList
object, on getting,
must return the value returned by running the following steps:
Let element be the first element in
tree order represented by the
RadioNodeList
object that is an input
element whose type
attribute
is in the Radio Button
state and whose checkedness
is true. Otherwise, let it be null.
If element is null, or if it is an
element with no value
attribute, return the empty string.
Otherwise, return the value of element's
value
attribute.
On setting, the value
DOM attribute must run
the following steps:
Let element be the first element in
tree order represented by the
RadioNodeList
object that is an input
element whose type
attribute
is in the Radio Button
state and whose value
content
attribute is present and equal to the new value, if any. Otherwise,
let it be null.
If element is not null, then set its checkedness to true.
The HTMLOptionsCollection
interface represents a
list of option
elements. It is always rooted on a
select
element and has attributes and methods that
manipulate that element's descendants.
[Callable=namedItem] interface HTMLOptionsCollection { attribute unsigned long length; [IndexGetter] HTMLOptionElement item(in unsigned long index); [NameGetter] Object namedItem(in DOMString name); void add(in HTMLElement element, [Optional] in HTMLElement before); void add(in HTMLElement element, in long before); void remove(in long index); };
length
[ = value ]Returns the number of elements in the collection.
When set to a smaller number, truncates the number of option
elements in the corresponding container.
When set to a greater number, adds new blank option
elements to that container.
item
(index)Returns the item with index index from the collection. The items are sorted in tree order.
Returns null if index is out of range.
namedItem
(name)Returns the item with ID or name
name from the collection.
If there are multiple matching items, then a NodeList
object containing all those elements is returned.
Returns null if no element with that ID could be found.
add
(element [, before ] )Inserts element before the node given by before.
The before argument can be a number, in which case element is inserted before the item with that number, or an element from the collection, in which case element is inserted before that element.
If before is omitted, null, or a number out of range, then element will be added at the end of the list.
This method will throw a HIERARCHY_REQUEST_ERR
exception if element is an ancestor of the
element into which it is to be inserted. If element is not an option
or
optgroup
element, then the method does nothing.
The object's indices of the supported indexed properties are the numbers in the range zero to one less than the number of nodes represented by the collection. If there are no such elements, then there are no supported indexed properties.
On getting, the length
attribute must return the number of nodes represented by the
collection.
On setting, the behavior depends on whether the new value is
equal to, greater than, or less than the number of nodes
represented by the collection at that time. If the
number is the same, then setting the attribute must do nothing. If
the new value is greater, then n new
option
elements with no attributes and no child nodes
must be appended to the select
element on which the
HTMLOptionsCollection
is rooted, where n is the difference between the two numbers (new
value minus old value). If the new value is lower, then the last
n nodes in the collection must be removed from
their parent nodes, where n is the difference
between the two numbers (old value minus new value).
Setting length
never removes
or adds any optgroup
elements, and never adds new
children to existing optgroup
elements (though it can
remove children from them).
The item(index)
method must return the indexth node in the collection. If there is no indexth node in the collection, then the method must
return null.
The names of the supported named properties consist
of the values of all the id
and name
attributes of all the elements
represented by the collection.
The namedItem(name)
method must act according to the
following algorithm:
id
attribute or a name
attribute equal to name, then return that node and stop the
algorithm.id
attribute or a name
attribute equal to name, then return null and stop the algorithm.NodeList
object representing a
live view of the HTMLOptionsCollection
object, further
filtered so that the only nodes in the NodeList
object
are those that have either an id
attribute or a name
attribute
equal to name. The nodes in the
NodeList
object must be sorted in tree
order.NodeList
object.The add(element, before)
method must act according to the following algorithm:
If element is not an option
or optgroup
element, then return and abort these
steps.
If element is an ancestor of the
select
element element on which the
HTMLOptionsCollection
is rooted, then throw a
HIERARCHY_REQUEST_ERR
exception.
If before is an element, but that
element isn't a descendant of the select
element
element on which the HTMLOptionsCollection
is rooted,
then throw a NOT_FOUND_ERR
exception.
If element and before are the same element, then return and abort these steps.
If before is a node, then let reference be that node. Otherwise, if before is an integer, and there is a beforeth node in the collection, let reference be that node. Otherwise, let reference be null.
If reference is not null, let parent be the parent node of reference. Otherwise, let parent
be the select
element element on which the
HTMLOptionsCollection
is rooted.
Act as if the DOM Core insertBefore()
method was invoked
on the parent node, with element as the first argument and reference as the second argument.
The remove(index)
method must act according to
the following algorithm:
If the number of nodes represented by the collection is zero, abort these steps.
If index is not a number greater than or equal to 0 and less than the number of nodes represented by the collection, let element be the first element in the collection. Otherwise, let element be the indexth element in the collection.
Remove element from its parent node.
The DOMTokenList
interface represents an interface
to an underlying string that consists of an unordered set of
unique space-separated tokens.
[Stringifies] interface DOMTokenList { readonly attribute unsigned long length; [IndexGetter] DOMString item(in unsigned long index); boolean has(in DOMString token); void add(in DOMString token); void remove(in DOMString token); boolean toggle(in DOMString token); };
length
Returns the number of tokens in the string.
item
(index)Returns the token with index index. The tokens are sorted alphabetically.
Returns null if index is out of range.
has
(token)Returns true if the token is present; false otherwise.
Throws an INVALID_CHARACTER_ERR
exception if token contains any spaces.
add
(token)Adds token, unless it is already present.
Throws an INVALID_CHARACTER_ERR
exception if token contains any spaces.
remove
(token)Removes token if it is present.
Throws an INVALID_CHARACTER_ERR
exception if token contains any spaces.
toggle
(token)Adds token if it is not present, or removes it if it is.
Throws an INVALID_CHARACTER_ERR
exception if token contains any spaces.
The length
attribute must return the number of unique tokens that
result from splitting the
underlying string on spaces. This is the length.
The object's indices of the supported indexed properties are the numbers in the range zero to length-1, unless the length is zero, in which case there are no supported indexed properties.
The item(index)
method must split the underlying string on spaces, sort
the resulting list of tokens by Unicode code point,
remove exact duplicates, and then return the indexth item in this list. If index is equal to or greater than the number of
tokens, then the method must return null.
The has(token)
method must run the following
algorithm:
INVALID_CHARACTER_ERR
exception and stop the
algorithm.The add(token)
method must run the following
algorithm:
INVALID_CHARACTER_ERR
exception and stop the
algorithm.DOMTokenList
object's underlying string
then stop the algorithm.DOMTokenList
object's underlying
string is not the empty string and the last character of that
string is not a space character, then append a U+0020
SPACE character to the end of that string.DOMTokenList
object's underlying string.The remove(token)
method must run the following
algorithm:
INVALID_CHARACTER_ERR
exception and stop the
algorithm.The toggle(token)
method must run the following
algorithm:
INVALID_CHARACTER_ERR
exception and stop the
algorithm.DOMTokenList
object's underlying string
then remove the given
token from the underlying string, and
stop the algorithm, returning false.DOMTokenList
object's underlying
string is not the empty string and the last character of that
string is not a space character, then append a U+0020
SPACE character to the end of that string.DOMTokenList
object's underlying string.Objects implementing the DOMTokenList
interface must
stringify to the object's
underlying string representation.
When a user agent is required to obtain a structured clone of an object, it must run the following algorithm, which either returns a separate object, or throws an exception.
Let input be the object being cloned.
Let memory be a list of objects, initially empty. (This is used to catch cycles.)
Let output be the object resulting from calling the internal structured cloning algorithm with input and memory.
Return output.
The internal structured cloning algorithm is always called with two arguments, input and memory, and its behavior depends on the type of input, as follows:
Return the undefined value.
Return the null value.
Return the false value.
Return the true value.
Return a newly constructed Number object with the same value as input.
Return a newly constructed String object with the same value as input.
Date
objectReturn a newly constructed Date
object with the same value as input.
RegExp
objectReturn a newly constructed RegExp
object with the same pattern and flags as input.
The value of the lastIndex
property is not copied.
ImageData
objectReturn a newly constructed ImageData
object
with the same width
and
height
as input, and with a newly constructed
CanvasPixelArray
for its data
attribute, with the same
length
and pixel
values as the input's.
Return the null value.
If input is in memory, then throw a
NOT_SUPPORTED_ERR
exception and abort the overall
structured clone algorithm.
Otherwise, let new memory be a list consisting of the items in memory with the addition of input.
Create a new object, output, of the same type as input: either an Array or an Object.
For each enumerable property in input, add a corresponding property to output having the same name, and having a value created from invoking the internal structured cloning algorithm recursively with the value of the property as the "input" argument and new memory as the "memory" argument. The order of the properties in the input and output objects must be the same.
This does not walk the prototype chain.
Return output.
Error
)Return the null value.
The DOMStringMap
interface represents a set of
name-value pairs. It exposes these using the scripting language's
native mechanisms for property access.
When a DOMStringMap
object is instantiated, it is
associated with three algorithms, one for getting the list of
name-value pairs, one for setting names to certain values, and one
for deleting names.
[NameCreator, NameDeleter, NameGetter, NameSetter] interface DOMStringMap {};
The names of the supported named properties on a
DOMStringMap
object at any instant are the names of
each pair returned from the algorithm for getting the list of
name-value pairs at that instant.
When a DOMStringMap
object is indexed to retrieve a
named property name, the value returned must be
the value component of the name-value pair whose name component is
name in the list returned by the algorithm for
getting the list of name-value pairs.
When a DOMStringMap
object is indexed to create or
modify a named property name with value value, the algorithm for setting names to certain
values must be run, passing name as the name and
the result of converting value to a
DOMString
as the value.
When a DOMStringMap
object is indexed to delete a
named property named name, the algorithm for
deleting names must be run, passing name as the
name.
The DOMStringMap
interface definition
here is only intended for JavaScript environments. Other language
bindings will need to define how DOMStringMap
is to be
implemented for those languages.
The dataset
attribute on
elements exposes the data-*
attributes on the element.
Given the following fragment and elements with similar constructions:
<img class="tower" id="tower5" data-x="12" data-y="5" data-ai="robotarget" data-hp="46" data-ability="flames" src="towers/rocket.png alt="Rocket Tower">
...one could imagine a function splashDamage()
that takes some arguments, the first
of which is the element to process:
function splashDamage(node, x, y, damage) { if (node.classList.has('tower') && // checking the 'class' attribute node.dataset.x == x && // reading the 'data-x' attribute node.dataset.y == y) { // reading the 'data-y' attribute var hp = parseInt(node.dataset.hp); // reading the 'data-hp' attribute hp = hp - damage; if (hp < 0) { hp = 0; node.dataset.ai = 'dead'; // setting the 'data-ai' attribute delete node.dataset.ability; // removing the 'data-ability' attribute } node.dataset.hp = hp; // setting the 'data-hp' attribute } }
DOM3 Core defines mechanisms for checking for interface support, and for obtaining implementations of interfaces, using feature strings. [DOM3CORE]
A DOM application can use the hasFeature(feature,
version)
method of the
DOMImplementation
interface with parameter values
"HTML
" and "5.0
" (respectively)
to determine whether or not this module is supported by the
implementation. In addition to the feature string "HTML
", the feature string "XHTML
" (with version string "5.0
") can
be used to check if the implementation supports XHTML. User agents should respond with a true value when the
hasFeature
method is queried with these values.
Authors are cautioned, however, that UAs returning true might not be
perfectly compliant, and that UAs returning false might well have
support for features in this specification; in general, therefore,
use of this method is discouraged.
The values "HTML
" and "XHTML
" (both with version "5.0
") should
also be supported in the context of the getFeature()
and isSupported()
methods, as defined by DOM3 Core.
The interfaces defined in this specification are not
always supersets of the interfaces defined in DOM2 HTML; some
features that were formerly deprecated, poorly supported, rarely
used or considered unnecessary have been removed. Therefore it is
not guaranteed that an implementation that supports "HTML
" "5.0
" also supports "HTML
" "2.0
".
The following DOMException
codes are defined in DOM
Core. [DOMCORE]
INDEX_SIZE_ERR
DOMSTRING_SIZE_ERR
HIERARCHY_REQUEST_ERR
WRONG_DOCUMENT_ERR
INVALID_CHARACTER_ERR
NO_DATA_ALLOWED_ERR
NO_MODIFICATION_ALLOWED_ERR
NOT_FOUND_ERR
NOT_SUPPORTED_ERR
INUSE_ATTRIBUTE_ERR
INVALID_STATE_ERR
SYNTAX_ERR
INVALID_MODIFICATION_ERR
NAMESPACE_ERR
INVALID_ACCESS_ERR
VALIDATION_ERR
TYPE_MISMATCH_ERR
SECURITY_ERR
NETWORK_ERR
ABORT_ERR
URL_MISMATCH_ERR
QUOTA_EXCEEDED_ERR
DATAGRID_MODEL_ERR
PARSE_ERR
SERIALISE_ERR
There is an implied strong reference from any DOM attribute that returns a pre-existing object to that object.
For example, the document.location
attribute means
that there is a strong reference from a Document
object to its Location
object. Similarly, there is
always a strong reference from a Document
to any
descendant nodes, and from any node to its owner
Document
.
This section is non-normative.
An introduction to marking up a document.
Every XML and HTML document in an HTML UA is represented by a
Document
object. [DOM3CORE]
The document's address is an absolute URL
that is set when the Document
is created. The
document's current address is an absolute URL
that can change during the lifetime of the Document
,
for example when the user navigates to
a fragment identifier on the
page. The document's current address
must be set to the document's address when the
Document
is created.
For purposes of generating the address of the resource from
which Request-URIs are obtained as required by HTTP for the
Referer
(sic) header, the user
agent must use the document's current address. [HTTP]
When a Document
is created by a script using the createDocument()
API, the document's
address is the same as the document's address of
the active document of the script's browsing
context.
Document
objects are assumed to be XML
documents unless they are flagged as being HTML
documents when they are created. Whether a document is an
HTML document or an XML document affects the behavior of
certain APIs, as well as a few CSS rendering rules. [CSS21]
A Document
object created by the createDocument()
API on the
DOMImplementation
object is initially an XML document, but can be made into an
HTML document by calling document.open()
on it.
All Document
objects (in user agents implementing
this specification) must also implement
the HTMLDocument
interface, available using
binding-specific methods. (This is the case whether or not the
document in question is an HTML
document or indeed whether it contains any HTML
elements at all.) Document
objects must also implement the document-level interface
of any other namespaces found in the document that the UA
supports.
For example, if an HTML implementation also
supports SVG, then the Document
object implements both
HTMLDocument
and SVGDocument
.
Because the HTMLDocument
interface is
now obtained using binding-specific casting methods instead of
simply being the primary interface of the document object, it is no
longer defined as inheriting from Document
.
[NameGetter=OverrideBuiltins, ImplementedOn=Document] interface HTMLDocument { // resource metadata management [PutForwards=href] readonly attribute Location location; readonly attribute DOMString URL; attribute DOMString domain; readonly attribute DOMString referrer; attribute DOMString cookie; readonly attribute DOMString lastModified; readonly attribute DOMString compatMode; attribute DOMString charset; readonly attribute DOMString characterSet; readonly attribute DOMString defaultCharset; readonly attribute DOMString readyState; // DOM tree accessors attribute DOMString title; attribute DOMString dir; attribute HTMLElement body; readonly attribute HTMLCollection images; readonly attribute HTMLCollection embeds; readonly attribute HTMLCollection plugins; readonly attribute HTMLCollection links; readonly attribute HTMLCollection forms; readonly attribute HTMLCollection anchors; readonly attribute HTMLCollection scripts; NodeList getElementsByName(in DOMString elementName); NodeList getElementsByClassName(in DOMString classNames); // dynamic markup insertion attribute DOMString innerHTML; HTMLDocument open([Optional] in DOMString type, [Optional] in DOMString replace); WindowProxy open(in DOMString url, in DOMString name, in DOMString features, [Optional] in boolean replace); void close(); void write([Variadic] in DOMString text); void writeln([Variadic] in DOMString text); // user interaction Selection getSelection(); readonly attribute Element activeElement; boolean hasFocus(); attribute DOMString designMode; boolean execCommand(in DOMString commandId); boolean execCommand(in DOMString commandId, in boolean showUI); boolean execCommand(in DOMString commandId, in boolean showUI, in DOMString value); boolean queryCommandEnabled(in DOMString commandId); boolean queryCommandIndeterm(in DOMString commandId); boolean queryCommandState(in DOMString commandId); boolean queryCommandSupported(in DOMString commandId); DOMString queryCommandValue(in DOMString commandId); readonly attribute HTMLCollection commands; // event handler DOM attributes attribute Function onabort; attribute Function onblur; attribute Function oncanplay; attribute Function oncanplaythrough; attribute Function onchange; attribute Function onclick; attribute Function oncontextmenu; attribute Function ondataunavailable; attribute Function ondblclick; attribute Function ondrag; attribute Function ondragend; attribute Function ondragenter; attribute Function ondragleave; attribute Function ondragover; attribute Function ondragstart; attribute Function ondrop; attribute Function ondurationchange; attribute Function onemptied; attribute Function onended; attribute Function onerror; attribute Function onfocus; attribute Function onformchange; attribute Function onforminput; attribute Function oninput; attribute Function oninvalid; attribute Function onkeydown; attribute Function onkeypress; attribute Function onkeyup; attribute Function onload; attribute Function onloadeddata; attribute Function onloadedmetadata; attribute Function onloadstart; attribute Function onmousedown; attribute Function onmousemove; attribute Function onmouseout; attribute Function onmouseover; attribute Function onmouseup; attribute Function onmousewheel; attribute Function onpause; attribute Function onplay; attribute Function onplaying; attribute Function onprogress; attribute Function onratechange; attribute Function onreadystatechange; attribute Function onscroll; attribute Function onseeked; attribute Function onseeking; attribute Function onselect; attribute Function onshow; attribute Function onstalled; attribute Function onsubmit; attribute Function onsuspend; attribute Function ontimeupdate; attribute Function onvolumechange; attribute Function onwaiting; };
Since the HTMLDocument
interface holds methods and
attributes related to a number of disparate features, the members of
this interface are described in various different sections.
User agents must raise a
SECURITY_ERR
exception whenever any of the members of
an HTMLDocument
object are accessed by scripts whose
effective script origin is not the same as the Document
's effective
script origin.
URL
Returns the document's address.
referrer
Returns the
address of the Document
from which the user
navigated to this one, unless it was blocked or there was no such
document, in which case it returns the empty string.
The noreferrer
link
type can be used to block the referrer.
The URL
attribute must return the document's address.
The referrer
attribute
must return either the current address of the active document
of the source browsing context at the time the
navigation was started (that is, the page which navigated the browsing context
to the current document), or the empty string if there is no such
originating page, or if the UA has been configured not to report
referrers in this case, or if the navigation was initiated for a
hyperlink with a noreferrer
keyword.
In the case of HTTP, the referrer
DOM attribute will
match the Referer
(sic) header
that was sent when fetching the current
page.
Typically user agents are configured to not report
referrers in the case where the referrer uses an encrypted protocol
and the current page does not (e.g. when navigating from an https:
page to an http:
page).
cookie
[ = value ]Returns the HTTP cookies that apply to the
Document
. If there are no cookies or cookies can't be
applied to this resource, the empty string will be returned.
Can be set, to add a new cookie to the element's set of HTTP cookies.
If the Document
has no browsing
context an INVALID_STATE_ERR
exception will be
thrown. If the contents are sandboxed into a unique origin, a
SECURITY_ERR
exception will be thrown.
The cookie
attribute represents the cookies of the resource.
On getting, if the document is not associated
with a browsing context then the user agent must raise
an INVALID_STATE_ERR
exception. Otherwise, if the
sandboxed origin browsing context flag was set on the
browsing context of the Document
when the
Document
was created, the user agent must raise a
SECURITY_ERR
exception. Otherwise, if the
document's address does not use a server-based naming
authority, it must return the empty string. Otherwise, it must first
obtain the storage mutex and then return the same
string as the value of the Cookie
HTTP header
it would include if fetching the resource
indicated by the document's address over HTTP, as per
RFC 2109 section 4.3.4 or later specifications, excluding HTTP-only
cookies. [RFC2109] [RFC2965]
On setting, if the document is not associated with a
browsing context then the user agent must raise an
INVALID_STATE_ERR
exception. Otherwise, if the
sandboxed origin browsing context flag was set on the
browsing context of the Document
when the
Document
was created, the user agent must raise a
SECURITY_ERR
exception. Otherwise, if the
document's address does not use a server-based naming
authority, it must do nothing. Otherwise, the user agent must
obtain the storage mutex and then act as it would when
processing cookies if it had just attempted to fetch
the document's address over HTTP, and had received a
response with a Set-Cookie
header whose value was the
specified value, as per RFC 2109 sections 4.3.1, 4.3.2, and 4.3.3 or
later specifications, but without overwriting the values of
HTTP-only cookies. [RFC2109] [RFC2965]
This specification does not define what makes an
HTTP-only cookie, and at the time of publication the editor is not
aware of any reference for HTTP-only cookies. They are a feature
supported by some Web browsers wherein an "httponly
" parameter added to the cookie string
causes the cookie to be hidden from script.
Since the cookie
attribute is accessible
across frames, the path restrictions on cookies are only a tool to
help manage which cookies are sent to which parts of the site, and
are not in any way a security feature.
lastModified
Returns the date of the last modification to the document, as
reported by the server, in the form "MM/DD/YYYY hh:mm:ss
".
If the last modification date is not known, the current time is returned instead.
The lastModified
attribute, on getting, must return the date and time of the
Document
's source file's last modification, in the
user's local time zone, in the following format:
All the numeric components above, other than the year, must be given as two digits in the range U+0030 DIGIT ZERO to U+0039 DIGIT NINE representing the number in base ten, zero-padded if necessary. The year must be given as four or more digits in the range U+0030 DIGIT ZERO to U+0039 DIGIT NINE representing the number in base ten, zero-padded if necessary.
The Document
's source file's last modification date
and time must be derived from relevant features of the networking
protocols used, e.g. from the value of the HTTP Last-Modified
header of the document, or from
metadata in the file system for local files. If the last
modification date and time are not known, the attribute must return
the current date and time in the above format.
compatMode
In a conforming document, returns the string "CSS1Compat
". (In quirks mode
documents, returns the string "BackCompat
",
but a conforming document can never trigger quirks
mode.)
A Document
is always set to one of three modes:
no quirks mode, the default; quirks mode, used
typically for legacy documents; and limited quirks mode,
also known as "almost standards" mode. The mode is only ever changed
from the default by the HTML parser, based on the
presence, absence, or value of the DOCTYPE string.
The compatMode
DOM
attribute must return the literal string "CSS1Compat
" unless the document has been set to
quirks mode by the HTML parser, in which
case it must instead return the literal string "BackCompat
".
As far as parsing goes, the quirks I know of are:
charset
[ = value ]Returns the document's character encoding.
Can be set, to dynamically change the document's character encoding.
New values that are not IANA-registered aliases are ignored.
characterSet
Returns the document's character encoding.
defaultCharset
Returns what might be the user agent's default character encoding.
Documents have an associated character encoding. When a Document
object is created, the document's character encoding
must be initialized to UTF-16. Various algorithms during page
loading affect this value, as does the charset
setter. [IANACHARSET]
The charset
DOM attribute must, on getting, return the preferred MIME name of
the document's character encoding. On setting, if the
new value is an IANA-registered alias for a character encoding, the
document's character encoding must be set to that
character encoding. (Otherwise, nothing happens.)
The characterSet
DOM attribute must, on getting, return the preferred MIME name of
the document's character encoding.
The defaultCharset
DOM attribute must, on getting, return the preferred MIME name of a
character encoding, possibly the user's default encoding, or an
encoding associated with the user's current geographical location,
or any arbitrary encoding name.
readyState
Returns "loading" while the Document
is loading, and "complete" once it has loaded.
The readystatechange
event fires on the Document
object when this value changes.
Each document has a current document readiness. When a
Document
object is created, it must have its
current document readiness set to the string "loading"
if the document is associated with an HTML parser or an
XML parser, or to the string "complete"
otherwise. Various algorithms during page loading affect this
value. When the value is set, the user agent must fire a
simple event called readystatechange
at the
Document
object.
The readyState
DOM
attribute must, on getting, return the current document
readiness.
The html
element of a document is the
document's root element, if there is one and it's an
html
element, or null otherwise.
The head
element of a document is the
first head
element that is a child of the
html
element, if there is one, or null
otherwise.
title
[ = value ]Returns the document's title, as given by the
title
element.
Can be set, to update the document's title. If there is no
head
element,
the new value is ignored.
In SVG documents, the SVGDocument
interface's
title
attribute takes
precedence.
The title
element of a document is the
first title
element in the document (in tree order), if
there is one, or null otherwise.
The title
attribute must,
on getting, run the following algorithm:
If the root element is an svg
element in the "http://www.w3.org/2000/svg
"
namespace, and the user agent supports SVG, then the getter must
return the value that would have been returned by the DOM attribute
of the same name on the SVGDocument
interface. [SVG]
Otherwise, it must return a concatenation of the data of all
the child text nodes of the
title
element, in tree order, or the empty
string if the title
element is
null.
On setting, the following algorithm must be run. Mutation events must be fired as appropriate.
If the root element is an svg
element in the "http://www.w3.org/2000/svg
"
namespace, and the user agent supports SVG, then the setter must
defer to the setter for the DOM attribute of the same name on the
SVGDocument
interface (if it is readonly, then this
will raise an exception). Stop the algorithm here. [SVG]
title
element is null and
the head
element is null, then the
attribute must do nothing. Stop the algorithm here.title
element is null, then a
new title
element must be created and appended to
the head
element.title
element (if
any) must all be removed.Text
node whose data is the new value
being assigned must be appended to the title
element.The title
attribute on
the HTMLDocument
interface should shadow the attribute
of the same name on the SVGDocument
interface when the
user agent supports both HTML and SVG. [SVG]
body
[ = value ]Returns the body element.
Can be set, to replace the body element.
If the new value is not a body
or frameset
element, this will throw a HIERARCHY_REQUEST_ERR
exception.
The body element of a document is the first child of
the html
element that is either a
body
element or a frameset
element. If
there is no such element, it is null. If the body
element is null, then when the specification requires that events be
fired at "the body element", they must instead be fired at the
Document
object.
The body
attribute, on getting, must return the body element of
the document (either a body
element, a
frameset
element, or null). On setting, the following
algorithm must be run:
body
or
frameset
element, then raise a
HIERARCHY_REQUEST_ERR
exception and abort these
steps.replaceChild()
method had been
called with the new value and the
incumbent body element as its two arguments respectively,
then abort these steps.images
Returns an HTMLCollection
of the img
elements in the Document
.
embeds
plugins
Return an HTMLCollection
of the embed
elements in the Document
.
links
Returns an HTMLCollection
of the a
and area
elements in the Document
that have href
attributes.
forms
Return an HTMLCollection
of the form
elements in the Document
.
scripts
Return an HTMLCollection
of the script
elements in the Document
.
The images
attribute must return an HTMLCollection
rooted at the
Document
node, whose filter matches only
img
elements.
The embeds
attribute must return an HTMLCollection
rooted at the
Document
node, whose filter matches only
embed
elements.
The plugins
attribute must return the same object as that returned by the embeds
attribute.
The links
attribute must return an HTMLCollection
rooted at the
Document
node, whose filter matches only a
elements with href
attributes and area
elements with href
attributes.
The forms
attribute must return an HTMLCollection
rooted at the
Document
node, whose filter matches only
form
elements.
The anchors
attribute must return an HTMLCollection
rooted at the
Document
node, whose filter matches only a
elements with name
attributes.
The scripts
attribute must return an HTMLCollection
rooted at the
Document
node, whose filter matches only
script
elements.
getElementsByName
(name)Returns a NodeList
of a
,
applet
, button
, form
,
frame
, frameset
, iframe
,
img
, input
, map
,
meta
, object
, select
, and textarea
elements in the
Document
that have a name
attribute with the value name.
getElementsByClassName(classes)
getElementsByClassName(classes)
Returns a NodeList
of the elements in the object
on which the method was invoked (a Document
or an
Element
) that have all the classes given by classes.
The classes argument is interpreted as a space-separated list of classes.
The getElementsByName(name)
method takes a string name, and must return a live NodeList
containing all the a
, applet
,
button
, form
, frame
,
frameset
, iframe
, img
,
input
, map
, meta
,
object
,
select
, and textarea
elements in that
document that have a name
attribute whose
value is equal to the name argument (in a
case-sensitive manner), in tree order.
The getElementsByClassName(classNames)
method takes a string that
contains an unordered set of unique space-separated
tokens representing classes. When called, the method must
return a live NodeList
object containing all the
elements in the document, in tree order, that have all
the classes specified in that argument, having obtained the classes
by splitting a string on
spaces. If there are no tokens specified in the argument,
then the method must return an empty NodeList
. If the
document is in quirks mode, then the comparisons for
the classes must be done in an ASCII case-insensitive
manner, otherwise, the comparisons must be done in a
case-sensitive manner.
The getElementsByClassName(classNames)
method on the
HTMLElement
interface must return a live
NodeList
with the nodes that the
HTMLDocument
getElementsByClassName()
method would return when passed the same argument(s), excluding any
elements that are not descendants of the HTMLElement
object on which the method was invoked.
HTML, SVG, and MathML elements define which classes they are in
by having an attribute in the per-element partition with the name
class
containing a space-separated list of
classes to which the element belongs. Other specifications may also
allow elements in their namespaces to be labeled as being in
specific classes.
Given the following XHTML fragment:
<div id="example"> <p id="p1" class="aaa bbb"/> <p id="p2" class="aaa ccc"/> <p id="p3" class="bbb ccc"/> </div>
A call to
document.getElementById('example').getElementsByClassName('aaa')
would return a NodeList
with the two paragraphs
p1
and p2
in it.
A call to getElementsByClassName('ccc bbb')
would only return one node, however, namely p3
. A call
to
document.getElementById('example').getElementsByClassName('bbb ccc ')
would return the same thing.
A call to getElementsByClassName('aaa,bbb')
would
return no nodes; none of the elements above are in the "aaa,bbb"
class.
The HTMLDocument
interface supports named properties. The names
of the supported named properties at any moment consist of
the values of the name
content
attributes of all the applet
, embed
,
form
, iframe
, img
, and
fallback-free object
elements in the
Document
that have name
content attributes, and the values of the id
content attributes of all the
applet
and fallback-free
object
elements in the Document
that have
id
content attributes, and the values
of the id
content attributes of all the
img
elements in the Document
that have
both name
content attributes and
id
content attributes.
When the
HTMLDocument
object is indexed for property
retrieval using a name name, then the user
agent must return the value obtained using the following steps:
Let elements be the list of named elements with
the name name in the Document
.
There will be at least one such element, by definition.
If elements has only one element, and that
element is an iframe
element, then return the
WindowProxy
object of the nested browsing
context represented by that iframe
element,
and abort these steps.
Otherwise, if elements has only one element, return that element and abort these steps.
Otherwise return an HTMLCollection
rooted at the
Document
node, whose filter matches only named elements with
the name name.
Named elements with the name name, for the purposes of the above algorithm, are those that are either:
applet
, embed
, form
,
iframe
, img
, or
fallback-free object
elements that have a
name
content attribute whose value
is name, orapplet
or fallback-free
object
elements that have an id
content attribute whose value is name, orimg
elements that have an id
content attribute whose value is name, and that have a name
content attribute present also.An object
element is said to be
fallback-free if it has no element descendants other than
param
elements, and no text node
descendants that are not inter-element whitespace.
The dir
attribute on the HTMLDocument
interface is defined
along with the dir
content
attribute.
Elements, attributes, and attribute values in HTML are defined
(by this specification) to have certain meanings (semantics). For
example, the ol
element represents an ordered list, and
the lang
attribute represents the
language of the content.
Authors must not use elements, attributes, and attribute values for purposes other than their appropriate intended semantic purpose.
For example, the following document is non-conforming, despite being syntactically correct:
<!DOCTYPE html> <html lang="en-GB"> <head> <title> Demonstration </title> </head> <body> <table> <tr> <td> My favourite animal is the cat. </td> </tr> <tr> <td> —<a href="http://example.org/~ernest/"><cite>Ernest</cite></a>, in an essay from 1992 </td> </tr> </table> </body> </html>
...because the data placed in the cells is clearly not tabular
data (and the cite
element mis-used). A corrected
version of this document might be:
<!DOCTYPE html> <html lang="en-GB"> <head> <title> Demonstration </title> </head> <body> <blockquote> <p> My favourite animal is the cat. </p> </blockquote> <p> —<a href="http://example.org/~ernest/">Ernest</a>, in an essay from 1992 </p> </body> </html>
This next document fragment, intended to represent the heading of a corporate site, is similarly non-conforming because the second line is not intended to be a heading of a subsection, but merely a subheading or subtitle (a subordinate heading for the same section).
<body> <h1>ABC Company</h1> <h2>Leading the way in widget design since 1432</h2> ...
The hgroup
element should be used in these kinds of
situations:
<body> <hgroup> <h1>ABC Company</h1> <h2>Leading the way in widget design since 1432</h2> </hgroup> ...
Through scripting and using other mechanisms, the values of attributes, text, and indeed the entire structure of the document may change dynamically while a user agent is processing it. The semantics of a document at an instant in time are those represented by the state of the document at that instant in time, and the semantics of a document can therefore change over time. User agents must update their presentation of the document as this occurs.
HTML has a progress
element that
describes a progress bar. If its "value" attribute is dynamically
updated by a script, the UA would update the rendering to show the
progress changing.
The nodes representing HTML elements in the DOM must implement, and expose to scripts, the interfaces listed for them in the relevant sections of this specification. This includes HTML elements in XML documents, even when those documents are in another context (e.g. inside an XSLT transform).
Elements in the DOM represent things; that is, they have intrinsic meaning, also known as semantics.
For example, an ol
element
represents an ordered list.
The basic interface, from which all the HTML
elements' interfaces inherit, and which
must be used by elements that have no additional
requirements, is the HTMLElement
interface.
interface HTMLElement : Element { // DOM tree accessors NodeList getElementsByClassName(in DOMString classNames); // dynamic markup insertion attribute DOMString innerHTML; attribute DOMString outerHTML; void insertAdjacentHTML(in DOMString position, in DOMString text); // metadata attributes attribute DOMString id; attribute DOMString title; attribute DOMString lang; attribute DOMString dir; attribute DOMString className; readonly attribute DOMTokenList classList; readonly attribute DOMStringMap dataset; // user interaction attribute boolean hidden; void click(); void scrollIntoView(); void scrollIntoView(in boolean top); attribute long tabIndex; void focus(); void blur(); attribute boolean draggable; attribute DOMString contentEditable; readonly attribute boolean isContentEditable; attribute HTMLMenuElement contextMenu; attribute boolean spellcheck; // styling readonly attribute CSSStyleDeclaration style; // event handler DOM attributes attribute Function onabort; attribute Function onblur; attribute Function oncanplay; attribute Function oncanplaythrough; attribute Function onchange; attribute Function onclick; attribute Function oncontextmenu; attribute Function ondataunavailable; attribute Function ondblclick; attribute Function ondrag; attribute Function ondragend; attribute Function ondragenter; attribute Function ondragleave; attribute Function ondragover; attribute Function ondragstart; attribute Function ondrop; attribute Function ondurationchange; attribute Function onemptied; attribute Function onended; attribute Function onerror; attribute Function onfocus; attribute Function onformchange; attribute Function onforminput; attribute Function oninput; attribute Function oninvalid; attribute Function onkeydown; attribute Function onkeypress; attribute Function onkeyup; attribute Function onload; attribute Function onloadeddata; attribute Function onloadedmetadata; attribute Function onloadstart; attribute Function onmousedown; attribute Function onmousemove; attribute Function onmouseout; attribute Function onmouseover; attribute Function onmouseup; attribute Function onmousewheel; attribute Function onpause; attribute Function onplay; attribute Function onplaying; attribute Function onprogress; attribute Function onratechange; attribute Function onreadystatechange; attribute Function onscroll; attribute Function onseeked; attribute Function onseeking; attribute Function onselect; attribute Function onshow; attribute Function onstalled; attribute Function onsubmit; attribute Function onsuspend; attribute Function ontimeupdate; attribute Function onvolumechange; attribute Function onwaiting; };
The HTMLElement
interface holds methods and
attributes related to a number of disparate features, and the
members of this interface are therefore described in various
different sections of this specification.
The following attributes are common to and may be specified on all HTML elements (even those not defined in this specification):
In addition, unless otherwise specified, the following event handler content attributes may be specified on any HTML element:
onabort
onblur
*oncanplay
oncanplaythrough
onchange
onclick
oncontextmenu
ondataunavailable
ondblclick
ondrag
ondragend
ondragenter
ondragleave
ondragover
ondragstart
ondrop
ondurationchange
onemptied
onended
onerror
*onfocus
*onformchange
onforminput
oninput
oninvalid
onkeydown
onkeypress
onkeyup
onload
*onloadeddata
onloadedmetadata
onloadstart
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
onmousewheel
onpause
onplay
onplaying
onprogress
onratechange
onreadystatechange
onscroll
onseeked
onseeking
onselect
onshow
onstalled
onsubmit
onsuspend
ontimeupdate
onvolumechange
onwaiting
The attributes marked with an asterisk cannot be
specified on body
elements as those elements expose
event handler attributes of the Window
object with the same
names.
Also, custom data
attributes (e.g. data-foldername
or
data-msgid
) can be specified on any HTML element, to store custom data
specific to the page.
In HTML documents, elements in the HTML
namespace may have an xmlns
attribute
specified, if, and only if, it has the exact value
"http://www.w3.org/1999/xhtml
". This does not apply to
XML documents.
In HTML, the xmlns
attribute
has absolutely no effect. It is basically a talisman. It is allowed
merely to make migration to and from XHTML mildly easier. When
parsed by an HTML parser, the attribute ends up in no
namespace, not the "http://www.w3.org/2000/xmlns/
"
namespace like namespace declaration attributes in XML do.
In XML, an xmlns
attribute is
part of the namespace declaration mechanism, and an element cannot
actually have an xmlns
attribute in no
namespace specified.
id
attributeThe id
attribute
represents its element's unique identifier. The value
must be unique in the element's home subtree and must
contain at least one character. The value must not contain any space characters.
If the value is not the empty string, user agents must associate
the element with the given value (exactly, including any space
characters) for the purposes of ID matching within the element's
home subtree (e.g. for selectors in CSS or for the
getElementById()
method in the DOM).
Identifiers are opaque strings. Particular meanings should not be
derived from the value of the id
attribute.
This specification doesn't preclude an element having multiple
IDs, if other mechanisms (e.g. DOM Core methods) can set an
element's ID in a way that doesn't conflict with the id
attribute.
title
attributeThe title
attribute
represents advisory information for the element, such
as would be appropriate for a tooltip. On a link, this could be the
title or a description of the target resource; on an image, it could
be the image credit or a description of the image; on a paragraph,
it could be a footnote or commentary on the text; on a citation, it
could be further information about the source; and so forth. The
value is text.
If this attribute is omitted from an element, then it implies
that the title
attribute of the
nearest ancestor HTML element
with a title
attribute set is also
relevant to this element. Setting the attribute overrides this,
explicitly stating that the advisory information of any ancestors is
not relevant to this element. Setting the attribute to the empty
string indicates that the element has no advisory information.
If the title
attribute's value
contains U+000A LINE FEED (LF) characters, the content is split into
multiple lines. Each U+000A LINE FEED (LF) character represents a
line break.
Caution is advised with respect to the use of newlines in title
attributes.
For instance, the following snippet actually defines an abbreviation's expansion with a line break in it:
<p>My logs show that there was some interest in <abbr title="Hypertext Transport Protocol">HTTP</abbr> today.</p>
Some elements, such as link
, abbr
, and
input
, define additional semantics for the title
attribute beyond the semantics
described above.
lang
and xml:lang
attributesThe lang
attribute specifies the
primary language for the element's contents and for any
of the element's attributes that contain text. Its value must be a
valid RFC 3066 language code, or the empty string. [RFC3066]
The xml:lang
attribute (that
is, the lang
attribute with the xml
prefix in the http://www.w3.org/XML/1998/namespace
namespace) is
defined in XML. [XML]
If these attributes are omitted from an element, then the language of this element is the same as the language of its parent element, if any. Setting the attribute to the empty string indicates that the primary language is unknown.
The lang
attribute may be used on
any HTML element.
The xml:lang
attribute may be
used on HTML elements in XML documents, as
well as elements in other namespaces if the relevant specifications
allow it (in particular, MathML and SVG allow xml:lang
attributes to be specified on
their elements). If both the lang
attribute and the xml:lang
attribute are specified on the same element, they must have exactly
the same value when compared in an ASCII
case-insensitive manner.
Authors must not use the xml:lang
attribute (that is, the lang
attribute with the xml
prefix in the http://www.w3.org/XML/1998/namespace
namespace) in
HTML documents. To ease migration to and from XHTML,
authors may specify an attribute in no namespace with no prefix and
with the localname xml:lang
on HTML
elements in HTML documents, but such attributes
must only be specified if a lang
attribute is also specified, and both attributes must have the same
value when compared in an ASCII case-insensitive
manner.
To determine the language of a node, user agents must look at the
nearest ancestor element (including the element itself if the node
is an element) that has an xml:lang
attribute set or is an HTML element and has a lang
attribute set. That attribute
specifies the language of the node.
If both the xml:lang
attribute
and the lang
attribute are set on an
element, user agents must use the xml:lang
attribute, and the lang
attribute must be ignored for the purposes of determining the
element's language.
If no explicit language is given for the root element, but there is a document-wide default language set, then that is the language of the node.
If there is no document-wide default language, then language information from a higher-level protocol (such as HTTP), if any, must be used as the final fallback language. In the absence of any language information, the default value is unknown (the empty string).
If the resulting value is not a recognized language code, then it must be treated as an unknown language (as if the value was the empty string).
User agents may use the element's language to determine proper processing or rendering (e.g. in the selection of appropriate fonts or pronunciations, or for dictionary selection).
The lang
DOM attribute
must reflect the lang
content attribute.
xml:base
attribute (XML only)The xml:base
attribute is
defined in XML Base. [XMLBASE]
The xml:base
attribute may be
used on elements of XML documents. Authors must not
use the xml:base
attribute in
HTML documents.
dir
attributeThe dir
attribute specifies the
element's text directionality. The attribute is an enumerated
attribute with the keyword ltr
mapping
to the state ltr, and the keyword rtl
mapping to the state rtl. The attribute has no
defaults.
The processing of this attribute is primarily performed by the presentation layer. For example, the rendering section in this specification defines a mapping from this attribute to the CSS 'direction' and 'unicode-bidi' properties, and CSS defines rendering in terms of those properties.
The directionality of an element, which is used in
particular by the canvas
element's text rendering API,
is either 'ltr' or 'rtl'. If the user agent supports CSS and the
'direction' property on this element has a computed value of either
'ltr' or 'rtl', then that is the directionality of the
element. Otherwise, if the element is being rendered, then the
directionality of the element is the directionality used by
the presentation layer, potentially determined from the value of the
dir
attribute on the
element. Otherwise, if the element's dir
attribute has the state ltr, the
element's directionality is 'ltr' (left-to-right); if the attribute
has the state rtl, the element's directionality is 'rtl'
(right-to-left); and otherwise, the element's directionality is the
same as its parent element, or 'ltr' if there is no parent
element.
dir
[ = value ]Returns the html
element's dir
attribute's value, if any.
Can be set, to either "ltr
" or "rtl
", to replace the html
element's dir
attribute's value.
If there is no html
element, returns the empty string and ignores new values.
The dir
DOM attribute on
an element must reflect the dir
content attribute of that element,
limited to only known values.
The dir
DOM
attribute on HTMLDocument
objects must
reflect the dir
content
attribute of the html
element, if any,
limited to only known values. If there is no such
element, then the attribute must return the empty string and do
nothing on setting.
Authors are strongly encouraged to use the dir
attribute to indicate text direction
rather than using CSS, since that way their documents will continue
to render correctly even in the absence of CSS (e.g. as interpreted
by search engines).
class
attributeEvery HTML element may have a
class
attribute specified.
The attribute, if specified, must have a value that is an unordered set of unique space-separated tokens representing the various classes that the element belongs to.
The classes that an HTML
element has assigned to it consists of all the classes
returned when the value of the class
attribute is split on
spaces.
Assigning classes to an element affects class
matching in selectors in CSS, the getElementsByClassName()
method in the DOM, and other such features.
Authors may use any value in the class
attribute, but are encouraged to use
the values that describe the nature of the content, rather than
values that describe the desired presentation of the
content.
style
attributeAll elements may have the style
content attribute set. If specified, the attribute must contain only
a list of zero or more semicolon-separated (;) CSS declarations. [CSS21]
In user agents that support CSS, the attribute's value must be parsed when the attribute is added or has its value changed, with its value treated as the body (the part inside the curly brackets) of a declaration block in a rule whose selector matches just the element on which the attribute is set. All URLs in the value must be resolved relative to the element when the attribute is parsed. For the purposes of the CSS cascade, the attribute must be considered to be a 'style' attribute at the author level.
Documents that use style
attributes on any of their elements must still be comprehensible and
usable if those attributes were removed.
In particular, using the style
attribute to hide and show content,
or to convey meaning that is otherwise not included in the document,
is non-conforming. (To hide and show content, use the hidden
attribute.)
style
Returns a CSSStyleDeclaration
object for the element's style
attribute.
The style
DOM attribute
must return a CSSStyleDeclaration
whose value
represents the declarations specified in the attribute, if
present. Mutating the CSSStyleDeclaration
object must
create a style
attribute on the
element (if there isn't one already) and then change its value to be
a value representing the serialized form of the
CSSStyleDeclaration
object. [CSSOM]
In the following example, the words that refer to colors are
marked up using the span
element and the style
attribute to make those words show
up in the relevant colors in visual media.
<p>My sweat suit is <span style="color: green; background: transparent">green</span> and my eyes are <span style="color: blue; background: transparent">blue</span>.</p>
A custom data attribute is an attribute whose name
starts with the string "data-
", has at least one
character after the hyphen, is XML-compatible, has no
namespace, and contains no characters in the range U+0041 .. U+005A
(LATIN CAPITAL LETTER A .. LATIN CAPITAL LETTER Z).
All attributes in HTML documents get lowercased automatically, so the restriction on uppercase letters doesn't affect such documents.
Custom data attributes are intended to store custom data private to the page or application, for which there are no more appropriate attributes or elements.
These attributes are not intended for use by software that is independent of the site that uses the attributes.
For instance, a site about music could annotate list items representing tracks in an album with custom data attributes containing the length of each track. This information could then be used by the site itself to allow the user to sort the list by track length, or to filter the list for tracks of certain lengths.
<ol> <li data-length="2m11s">Beyond The Sea</li> ... </ol>
It would be inappropriate, however, for the user to use generic software not associated with that music site to search for tracks of a certain length by looking at this data.
This is because these attributes are intended for use by the site's own scripts, and are not a generic extension mechanism for publicly-usable metadata.
Every HTML element may have any number of custom data attributes specified, with any value.
dataset
Returns a DOMStringMap
object for the element's data-*
attributes.
The dataset
DOM
attribute provides convenient accessors for all the data-*
attributes on an element. On
getting, the dataset
DOM attribute
must return a DOMStringMap
object, associated with the
following algorithms, which expose these attributes on their
element:
data-
", add a
name-value pair to list whose name is the
attribute's name with the first five character removed and whose
value is the attribute's value.data-
and the name passed to the
algorithm.setAttribute()
would have raised an
exception when setting an attribute with the name name, then this must raise the same
exception.data-
and the name passed to the
algorithm.If a Web page wanted an element to represent a space ship,
e.g. as part of a game, it would have to use the class
attribute along with data-*
attributes:
<div class="spaceship" data-id="92432" data-weapons="laser 2" data-shields="50%" data-x="30" data-y="10" data-z="90"> <button class="fire" onclick="spaceships[this.parentNode.dataset.id].fire()"> Fire </button> </div>
Authors should carefully design such extensions so that when the attributes are ignored and any associated CSS dropped, the page is still usable.
User agents must not derive any implementation behavior from these attributes or values. Specifications intended for user agents must not define these attributes to have any meaningful values.
All the elements in this specification have a defined content model, which describes what nodes are allowed inside the elements, and thus what the structure of an HTML document or fragment must look like.
As noted in the conformance and terminology
sections, for the purposes of determining if an element matches its
content model or not, CDATASection
nodes in the DOM are treated as
equivalent to Text
nodes, and entity reference nodes are treated as if
they were expanded in place.
The space characters are always allowed between elements. User agents represent these characters between elements in the source markup as text nodes in the DOM. Empty text nodes and text nodes consisting of just sequences of those characters are considered inter-element whitespace.
Inter-element whitespace, comment nodes, and processing instruction nodes must be ignored when establishing whether an element matches its content model or not, and must be ignored when following algorithms that define document and element semantics.
An element A is said to be preceded or followed by a second element B if A and B have the same parent node and there are no other element nodes or text nodes (other than inter-element whitespace) between them.
Authors must not use elements in the HTML namespace anywhere except where they are explicitly allowed, as defined for each element, or as explicitly required by other specifications. For XML compound documents, these contexts could be inside elements from other namespaces, if those elements are defined as providing the relevant contexts.
The Atom specification defines the Atom content
element, when its type
attribute has the value xhtml
, as requiring that it contains a single HTML
div
element. Thus, a div
element is
allowed in that context, even though this is not explicitly
normatively stated by this specification. [ATOM]
In addition, elements in the HTML namespace may be orphan nodes (i.e. without a parent node).
For example, creating a td
element and storing it
in a global variable in a script is conforming, even though
td
elements are otherwise only supposed to be used
inside tr
elements.
var data = { name: "Banana", cell: document.createElement('td'), };
Each element in HTML falls into zero or more categories that group elements with similar characteristics together. The following broad categories are used in this specification:
These categories are related as follows:
In addition, certain elements are categorized as form-associated elements and further subcategorized to define their role in various form-related processing models.
Some elements have unique requirements and do not fit into any particular category.
Metadata content is content that sets up the presentation or behavior of the rest of the content, or that sets up the relationship of the document with other documents, or that conveys other "out of band" information.
Elements from other namespaces whose semantics are primarily metadata-related (e.g. RDF) are also metadata content.
Thus, in the XML serialization, one can use RDF, like this:
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <head> <title>Hedral's Home Page</title> <r:RDF> <Person xmlns="http://www.w3.org/2000/10/swap/pim/contact#" r:about="http://hedral.example.com/#"> <fullName>Cat Hedral</fullName> <mailbox r:resource="mailto:hedral@damowmow.com"/> <personalTitle>Sir</personalTitle> </Person> </r:RDF> </head> <body> <h1>My home page</h1> <p>I like playing with string, I guess. Sister says squirrels are fun too so sometimes I follow her to play with them.</p> </body> </html>
This isn't possible in the HTML serialization, however.
Most elements that are used in the body of documents and applications are categorized as flow content.
As a general rule, elements whose content model allows any
flow content should have either at least one descendant
text node that is not inter-element
whitespace, or at least one descendant element node that is
embedded content. For the purposes of this requirement,
del
elements and their descendants must not be counted
as contributing to the ancestors of the del
element.
This requirement is not a hard requirement, however, as there are many cases where an element can be empty legitimately, for example when it is used as a placeholder which will later be filled in by a script, or when the element is part of a template and would on most pages be filled in but on some pages is not relevant.
Sectioning content is content that defines the scope of headings, footers, and contact information.
Each sectioning content element potentially has a heading and an outline. See the section on headings and sections for further details.
There are also certain elements that are sectioning roots. These are distinct from sectioning content, but they can also have an outline.
Heading content defines the header of a section (whether explicitly marked up using sectioning content elements, or implied by the heading content itself).
Phrasing content is the text of the document, as well as elements that mark up that text at the intra-paragraph level. Runs of phrasing content form paragraphs.
As a general rule, elements whose content model allows any
phrasing content should have either at least one
descendant text node that is not inter-element
whitespace, or at least one descendant element node that is
embedded content. For the purposes of this requirement,
nodes that are descendants of del
elements must not be
counted as contributing to the ancestors of the del
element.
Most elements that are categorized as phrasing content can only contain elements that are themselves categorized as phrasing content, not any flow content.
Text nodes that are not inter-element whitespace are phrasing content.
Embedded content is content that imports another resource into the document, or content from another vocabulary that is inserted into the document.
Elements that are from namespaces other than the HTML namespace and that convey content but not metadata, are embedded content for the purposes of the content models defined in this specification. (For example, MathML, or SVG.)
Some embedded content elements can have fallback content: content that is to be used when the external resource cannot be used (e.g. because it is of an unsupported format). The element definitions state what the fallback is, if any.
Interactive content is content that is specifically intended for user interaction.
Certain elements in HTML have an activation
behavior, which means that the user can activate them. This
triggers a sequence of events dependent on the activation mechanism,
and normally culminating in a click
event followed by a DOMActivate
event, as described below.
The user agent should allow the user to manually trigger elements that have an activation behavior, for instance using keyboard or voice input, or through mouse clicks. When the user triggers an element with a defined activation behavior in a manner other than clicking it, the default action of the interaction event must be to run synthetic click activation steps on the element.
When a user agent is to run synthetic click activation
steps on an element, the user agent must run pre-click
activation steps on the element, then fire a click
event at the element. The
default action of this click event
must be to run post-click activation steps on the
element. If the event is canceled, the user agent must run
canceled activation steps on the element instead.
Given an element target, the nearest activatable element is the element returned by the following algorithm:
If target has a defined activation behavior, then return target and abort these steps.
If target has a parent element, then set target to that parent element and return to the first step.
Otherwise, there is no nearest activatable element.
When a pointing device is clicked, the user agent must run these steps:
Let e be the nearest activatable element of the element designated by the user, if any.
If there is an element e, run pre-click activation steps on it.
Dispatching the required click
event.
Another specification presumably requires the firing of the click event?
If there is an element e, then the default action of the click event must be to run post-click activation steps on element e.
If there is an element e but the event is canceled, the user agent must run canceled activation steps on element e.
The above doesn't happen for arbitrary synthetic
events dispatched by author script. However, the click()
method can be used to make it
happen programmatically.
When a user agent is to run post-click activation
steps on an element, the user agent must fire a simple
event called DOMActivate
that is cancelable at
that element. The default action of this event must be to run
final activation steps on that element. If the event is
canceled, the user agent must run canceled activation
steps on the element instead.
When a user agent is to run pre-click activation steps on an element, it must run the pre-click activation steps defined for that element, if any.
When a user agent is to run canceled activation steps on an element, it must run the canceled activation steps defined for that element, if any.
When a user agent is to run final activation steps on
an element, it must run the activation behavior defined
for that element. Activation behaviors can refer to the click
and DOMActivate
events that were fired
by the steps above leading up to this point.
Some elements are described as transparent; they have "transparent" in the description of their content model.
When a content model includes a part that is "transparent", those parts must not contain content that would not be conformant if all transparent elements in the tree were replaced, in their parent element, by the children in the "transparent" part of their content model, retaining order.
When a transparent element has no parent, then the part of its content model that is "transparent" must instead be treated as accepting any flow content.
A paragraph is typically a block of text with one or more sentences that discuss a particular topic, as in typography, but can also be used for more general thematic grouping. For instance, an address is also a paragraph, as is a part of a form, a byline, or a stanza in a poem.
Paragraphs in flow content are defined relative to
what the document looks like without the a
,
ins
, del
, and map
elements
complicating matters, since those elements, with their hybrid
content models, can straddle paragraph boundaries.
Generally, having elements straddle paragraph boundaries is best avoided. Maintaining such markup can be difficult.
Let view be a view of the DOM that replaces
all a
, ins
, del
, and
map
elements in the document with their contents. Then,
in view, for each run of sibling phrasing
content nodes uninterrupted by other types of content, in an
element that accepts content other than phrasing
content, let first be the first node of
the run, and let last be the last node of the
run. For each such run that consists of at least one node that is
neither embedded content nor inter-element
whitespace, a paragraph exists in the original DOM from
immediately before first to immediately after
last. (Paragraphs can thus span across
a
, ins
, del
, and
map
elements.)
Conformance checkers may warn authors of cases where they have
paragraphs that overlap each other (this can happen with
object
, video
, audio
, and
canvas
elements).
A paragraph is also formed explicitly by
p
elements.
The p
element can be used to wrap
individual paragraphs when there would otherwise not be any content
other than phrasing content to separate the paragraphs from each
other.
In the following example, there are two paragraphs in a section. There is also a heading, which contains phrasing content that is not a paragraph. Note how the comments and inter-element whitespace do not form paragraphs.
<section> <h1>Example of paragraphs</h1> This is the <em>first</em> paragraph in this example. <p>This is the second.</p> <!-- This is not a paragraph. --> </section>
The following example takes that markup and puts
ins
and del
elements around some of the
markup to show that the text was changed (though in this case, the
changes admittedly don't make much sense). Notice how this example
has exactly the same paragraphs as the previous one, despite the
ins
and del
elements.
<section> <ins><h1>Example of paragraphs</h1> This is the <em>first</em> paragraph in</ins> this example<del>. <p>This is the second.</p></del> <!-- This is not a paragraph. --> </section>
In the following example, the link spans half of the first paragraph, all of the heading separating the two paragraphs, and half of the second paragraph.
<aside> Welcome! <a href="about.html"> This is home of... <h1>The Falcons!</h1> The Lockheed Martin multirole jet fighter aircraft! </a> This page discusses the F-16 Fighting Falcon's innermost secrets. </aside>
Here is another way of marking this up, this time showing the paragraphs explicitly, and splitting the one link element into three:
<aside> <p>Welcome! <a href="about.html">This is home of...</a></p> <h1><a href="about.html">The Falcons!</a></h1> <p><a href="about.html">The Lockheed Martin multirole jet fighter aircraft!</a> This page discusses the F-16 Fighting Falcon's innermost secrets.</p> </aside>
It is possible for paragraphs to overlap when using certain elements that define fallback content. For example, in the following section:
<section> <h1>My Cats</h1> You can play with my cat simulator. <object data="cats.sim"> To see the cat simulator, use one of the following links: <ul> <li><a href="cats.sim">Download simulator file</a> <li><a href="http://sims.example.com/watch?v=LYds5xY4INU">Use online simulator</a> </ul> Alternatively, upgrade to the Mellblom Browser. </object> I'm quite proud of it. </section>
There are five paragraphs:
object
element.The first paragraph is overlapped by the other four. A user agent that supports the "cats.sim" resource will only show the first one, but a user agent that shows the fallback will confusingly show the first sentence of the first paragraph as if it was in the same paragraph as the second one, and will show the last paragraph as if it was at the start of the second sentence of the first paragraph.
To avoid this confusion, explicit p
elements can be
used.
For HTML documents, and for HTML elements in HTML documents, certain APIs defined in DOM3 Core become case-insensitive or case-changing, as sometimes defined in DOM3 Core, and as summarized or required below. [DOM3CORE].
This does not apply to XML documents or to elements that are not in the HTML namespace despite being in HTML documents.
Element.tagName
and Node.nodeName
These attributes must return element names converted to uppercase, regardless of the case with which they were created.
Document.createElement()
The canonical form of HTML markup is all-lowercase; thus, this method will lowercase the argument before creating the requisite element. Also, the element created must be in the HTML namespace.
This doesn't apply to Document.createElementNS()
. Thus, it is possible,
by passing this last method a tag name in the wrong case, to
create an element that claims to have the tag name of an element
defined in this specification, but doesn't support its interfaces,
because it really has another tag name not accessible from the DOM
APIs.
Element.setAttribute()
Element.setAttributeNode()
Attribute names are converted to lowercase.
Specifically: when an attribute is set on an HTML element using Element.setAttribute()
, the name argument must be
converted to lowercase before the element is
affected; and when an Attr
node is set on an HTML element using Element.setAttributeNode()
, it must have its name
converted to lowercase before the element is
affected.
This doesn't apply to Document.setAttributeNS()
and Document.setAttributeNodeNS()
.
Document.getElementsByTagName()
Element.getElementsByTagName()
These methods (but not their namespaced counterparts) must compare the given argument in an ASCII case-insensitive manner when looking at HTML elements, and in a case-sensitive manner otherwise.
Thus, in an HTML document with nodes in multiple namespaces, these methods will be both case-sensitive and case-insensitive at the same time.
APIs for dynamically inserting markup into the document interact with the parser, and thus their behavior, varies depending on whether they are used with HTML documents (and the HTML parser) or XHTML in XML documents (and the XML parser).
The open()
method comes in several variants with different numbers of
arguments.
open
( [ type [, replace ] ] )Causes the Document
to be replaced in-place, as if
it was a new Document
object, but reusing the
previous object, which is then returned.
If the type argument is omitted or has the
value "text/html
", then the resulting
Document
has an HTML parser associated with it, which
can be given data to parse using document.write()
. Otherwise, all
content passed to document.write()
will be parsed
as plain text.
If the replace argument is absent or false,
a new entry is added to the session history to represent this
entry, and the previous entries for this Document
are
all collapsed into one entry with a new Document
object.
The method has no effect if the Document
is still
being parsed.
open
( url, name, features [, replace ] )Works like the window.open()
method.
close
()Closes the input stream that was opened by the document.open()
method.
When called with two or fewer arguments, the method must act as follows:
Let type be the value of the first
argument, if there is one, or "text/html
"
otherwise.
Let replace be true if there is a second argument and it is an ASCII case-insensitive match for the value "replace", and false otherwise.
If the document has an active parser that isn't a script-created parser, and the
insertion point associated with that parser's
input stream is not undefined (that is, it
does point to somewhere in the input stream), then the
method does nothing. Abort these steps and return the
Document
object on which the method was invoked.
This basically causes document.open()
to be ignored
when it's called in an inline script found during the parsing of
data sent over the network, while still letting it have an effect
when called asynchronously or on a document that is itself being
spoon-fed using these APIs.
Unload the
Document
object, with the recycle
parameter set to true. If the user refused to allow the
document to be unloaded, then these steps must be
aborted.
If the document has an active parser, then stop that parser, and throw away any pending content in the input stream. what about if it doesn't, because it's either like a text/plain, or Atom, or PDF, or XHTML, or image document, or something?
Unregister all event listeners registered on the
Document
node and its descendants.
Remove all child nodes of the document, without firing any mutation events.
Replace the Document
's singleton objects with
new instances of those objects. (This includes in particular the
Window
, Location
, History
,
ApplicationCache
, UndoManager
,
Navigator
, and Selection
objects, the
various BarProp
objects, the two Storage
objects, and the various HTMLCollection
objects. It
also includes all the WebIDL prototypes in the JavaScript binding,
including the Document
object's prototype.)
Change the document's character encoding to UTF-16.
Change the document's address to the first script's browsing context's active document's address.
Create a new HTML parser and associate it with
the document. This is a script-created parser (meaning
that it can be closed by the document.open()
and document.close()
methods, and
that the tokenizer will wait for an explicit call to document.close()
before emitting
an end-of-file token). The encoding confidence is
irrelevant.
If the type string contains a U+003B SEMICOLON (;) character, remove the first such character and all characters from it up to the end of the string.
Strip all leading and trailing space characters from type.
If type is not now an ASCII
case-insensitive match for the string
"text/html
", then act as if the tokenizer had emitted
a start tag token with the tag name "pre", then set the HTML
parser's tokenization stage's content
model flag to PLAINTEXT.
If replace is false, then:
Document
's History
objectDocument
Document
object, as well as the state of
the document at the start of these steps. (This allows the user
to step backwards in the session history to see the page before
it was blown away by the document.open()
call.)Finally, set the insertion point to point at just before the end of the input stream (which at this point will be empty).
Return the Document
on which the method was
invoked.
When called with three or more arguments, the open()
method on the
HTMLDocument
object must call the open()
method on the Window
object of the HTMLDocument
object, with the same
arguments as the original call to the open()
method, and return whatever
that method returned. If the HTMLDocument
object has no
Window
object, then the method must raise an
INVALID_ACCESS_ERR
exception.
The close()
method must do nothing if there is no script-created
parser associated with the document. If there is such a
parser, then, when the method is called, the user agent must insert
an explicit "EOF" character at the end of the parser's
input stream.
document.write()
write
(text...)Adds the given string(s) to the Document
's input
stream. If necessary, calls the open()
method implicitly
first.
This method throws an INVALID_ACCESS_ERR
exception
when invoked on XML documents.
The document.write(...)
method must act as follows:
If the method was invoked on an XML
document, throw an INVALID_ACCESS_ERR
exception and abort these steps.
If the insertion point is undefined, the open()
method must be called
(with no arguments) on the document
object. If the user refused to allow the document to be
unloaded, then these steps must be aborted. Otherwise, the
insertion point will point at just before the end of
the (empty) input stream.
The string consisting of the concatenation of all the arguments to the method must be inserted into the input stream just before the insertion point.
If there is a pending external script, then the method must now return without further processing of the input stream.
Otherwise, the tokenizer must process the characters that were
inserted, one at a time, processing resulting tokens as they are
emitted, and stopping when the tokenizer reaches the insertion
point or when the processing of the tokenizer is aborted by the
tree construction stage (this can happen if a script
end tag token is emitted by the tokenizer).
If the document.write()
method was
called from script executing inline (i.e. executing because the
parser parsed a set of script
tags), then this is a
reentrant invocation of the
parser.
Finally, the method must return.
document.writeln()
writeln
(text...)Adds the given string(s) to the Document
's input
stream, followed by a newline character. If necessary, calls the
open()
method implicitly
first.
This method throws an INVALID_ACCESS_ERR
exception
when invoked on XML documents.
The document.writeln(...)
method, when invoked, must act as if the document.write()
method had been
invoked with the same argument(s), plus an extra argument consisting
of a string containing a single line feed character (U+000A).
innerHTML
The innerHTML
DOM
attribute represents the markup of the node's contents.
innerHTML
[ = value ]Returns a fragment of HTML or XML that represents the
Document
.
Can be set, to replace the Document
's contents
with the result of parsing the given string.
In the case of XML documents, will throw a
SYNTAX_ERR
if the Document
cannot be
serialized to XML, or if the given string is not well-formed.
innerHTML
[ = value ]Returns a fragment of HTML or XML that represents the element's contents.
Can be set, to replace the contents of the element with nodes parsed from the given string.
In the case of XML documents, will throw a
SYNTAX_ERR
if the element cannot be serialized to
XML, or if the given string is not well-formed.
On getting, if the node's document is an HTML document, then the attribute must return the result of running the HTML fragment serialization algorithm on the node; otherwise, the node's document is an XML document, and the attribute must return the result of running the XML fragment serialization algorithm on the node instead (this might raise an exception instead of returning a string).
On setting, the following steps must be run:
If the node's document is an HTML document: Invoke the HTML fragment parsing algorithm.
If the node's document is an XML document: Invoke the XML fragment parsing algorithm.
In either case, the algorithm must be invoked with the string
being assigned into the innerHTML
attribute as the input. If the node is an Element
node, then, in addition, that element must be passed as the context element.
If this raises an exception, then abort these steps.
Otherwise, let new children be the nodes returned.
If the attribute is being set on a Document
node,
and that document has an active HTML parser or
XML parser, then stop that parser.
what about if it doesn't, because it's either like a text/plain, or Atom, or PDF, or XHTML, or image document, or something?
Remove the child nodes of the node whose innerHTML
attribute is being set,
firing appropriate mutation events.
If the attribute is being set on a Document
node, let target document be that
Document
node. Otherwise, the attribute is being
set on an Element
node; let target
document be the ownerDocument
of
that Element
.
Set the ownerDocument
of all the nodes in
new children to the target
document.
Append all the new children nodes to the
node whose innerHTML
attribute
is being set, preserving their order, and firing mutation events
as appropriate.
outerHTML
The outerHTML
DOM
attribute represents the markup of the element and its contents.
outerHTML
[ = value ]Returns a fragment of HTML or XML that represents the element and its contents.
Can be set, to replace the element with nodes parsed from the given string.
In the case of XML documents, will throw a
SYNTAX_ERR
if the element cannot be serialized to
XML, or if the given string is not well-formed.
On getting, if the node's document is an HTML document, then the attribute must return the result of running the HTML fragment serialization algorithm on a fictional node whose only child is the node on which the attribute was invoked; otherwise, the node's document is an XML document, and the attribute must return the result of running the XML fragment serialization algorithm on that fictional node instead (this might raise an exception instead of returning a string).
On setting, the following steps must be run:
Let target be the element whose outerHTML
attribute is being
set.
If target has no parent node, then abort these steps. There would be no way to obtain a reference to the nodes created even if the remaining steps were run.
If target's parent node is a
Document
object, throw a
NO_MODIFICATION_ALLOWED_ERR
exception and abort these
steps.
Let parent be target's
parent node, unless that is a DocumentFragment
node,
in which case let parent be an arbitrary
body
element.
If target's document is an HTML document: Invoke the HTML fragment parsing algorithm.
If target's document is an XML document: Invoke the XML fragment parsing algorithm.
In either case, the algorithm must be invoked with the string
being assigned into the outerHTML
attribute as the input, and parent as the context element.
If this raises an exception, then abort these steps.
Otherwise, let new children be targets returned.
Set the ownerDocument
of all the nodes in
new children to target's
document.
Remove target from its parent node, firing mutation events as appropriate, and then insert in its place all the new children nodes, preserving their order, and again firing mutation events as appropriate.
insertAdjacentHTML()
insertAdjacentHTML
(position, text)Parsed the given string text as HTML or XML and inserts the resulting nodes into the tree in the position given by the position argument, as follows:
Throws a SYNTAX_ERR
exception the arguments have
invalid values (e.g., in the case of XML documents,
if the given string is not well-formed).
Throws a NO_MODIFICATION_ALLOWED_ERR
exception if
the given position isn't possible (e.g. inserting elements after
the root element of a Document
).
The insertAdjacentHTML(position, text)
method, when invoked, must run the following algorithm:
Let position and text be the method's first and second arguments, respectively.
Let target be the element on which the method was invoked.
Use the first matching item from this list:
If target has no parent node, then abort these steps.
If target's parent node is a
Document
object, then throw a
NO_MODIFICATION_ALLOWED_ERR
exception and abort
these steps.
Otherwise, let context be the parent node of target.
Let context be the same as target.
Throw a SYNTAX_ERR
exception.
If target's document is an HTML document: Invoke the HTML fragment parsing algorithm.
If target's document is an XML document: Invoke the XML fragment parsing algorithm.
In either case, the algorithm must be invoked with text as the input, and the element selected in by the previous step as the context element.
If this raises an exception, then abort these steps.
Otherwise, let new children be targets returned.
Set the ownerDocument
of all the nodes in
new children to target's
document.
Use the first matching item from this list:
Insert all the new children nodes immediately before target.
Insert all the new children nodes before the first child of target, if there is one. If there is no such child, append them all to target.
Append all the new children nodes to target.
Insert all the new children nodes immediately after target.
The new children nodes must be inserted in a manner that preserves their order and fires mutation events as appropriate.
html
elementhead
element followed by a body
element.manifest
HTMLElement
.The html
element represents the root of
an HTML document.
The manifest
attribute gives the address of the document's application
cache manifest, if there is
one. If the attribute is present, the attribute's value must be a
valid URL.
The manifest
attribute
only has an effect during
the early stages of document load. Changing the attribute
dynamically thus has no effect (and thus, no DOM API is provided for
this attribute).
For the purposes of application cache selection,
later base
elements cannot affect the resolving of relative URLs in manifest
attributes, as the
attributes are processed before those elements are seen.
head
elementhtml
element.title
element.HTMLElement
.The head
element represents a
collection of metadata for the Document
.
title
elementhead
element containing no other title
elements.HTMLElement
.The title
element represents the
document's title or name. Authors should use titles that identify
their documents even when they are used out of context, for example
in a user's history or bookmarks, or in search results. The
document's title is often different from its first heading, since the
first heading does not have to stand alone when taken out of
context.
There must be no more than one title
element per
document.
The title
element must not contain any
elements.
Here are some examples of appropriate titles, contrasted with the top-level headings that might be used on those same pages.
<title>Introduction to The Mating Rituals of Bees</title> ... <h1>Introduction</h1> <p>This companion guide to the highly successful <cite>Introduction to Medieval Bee-Keeping</cite> book is...
The next page might be a part of the same site. Note how the title describes the subject matter unambiguously, while the first heading assumes the reader knows what the context is and therefore won't wonder if the dances are Salsa or Waltz:
<title>Dances used during bee mating rituals</title> ... <h1>The Dances</h1>
The string to use as the document's title is given by the document.title
DOM
attribute. User agents should use the document's
title when referring to the document in their user
interface.
base
elementhead
element containing no other base
elements.href
target
interface HTMLBaseElement : HTMLElement { attribute DOMString href; attribute DOMString target; };
The base
element allows authors to specify the
document base URL for the purposes of resolving relative URLs, and the name
of the default browsing context for the purposes of
following hyperlinks. The element does not represent any content beyond this
information.
There must be no more than one base
element per
document.
A base
element must have either an href
attribute, a target
attribute, or both.
The href
content
attribute, if specified, must contain a valid URL.
A base
element, if it has an href
attribute, must come before any
other elements in the tree that have attributes defined as taking
URLs, except the html
element
(its manifest
attribute
isn't affected by base
elements).
The target
attribute, if specified, must contain a valid browsing context
name or keyword, which specifies which browsing
context is to be used as the default when hyperlinks and forms in the Document
cause navigation.
A base
element, if it has a target
attribute, must come before
any elements in the tree that represent hyperlinks.
If there are multiple base
elements
with target
attributes, all but
the first are ignored.
The href
and target
DOM attributes
must reflect the respective content attributes of the
same name.
link
elementnoscript
element that is a child of a head
element.href
rel
media
hreflang
type
sizes
title
attribute has special semantics on this element.interface HTMLLinkElement : HTMLElement { attribute boolean disabled; attribute DOMString href; attribute DOMString rel; readonly attribute DOMTokenList relList; attribute DOMString media; attribute DOMString hreflang; attribute DOMString type; attribute DOMString sizes; };
The LinkStyle
interface must also be implemented
by this element, the styling processing model defines
how. [CSSOM]
The link
element allows authors to link their
document to other resources.
The destination of the link(s) is given by the href
attribute, which must
be present and must contain a valid URL. If the href
attribute is absent, then the
element does not define a link.
The types of link indicated (the relationships) are given by the
value of the rel
attribute, which must be present, and must have a value that is a
set of space-separated tokens. The allowed values and their meanings are defined
in a later section. If the rel
attribute is absent, or if the values used are not allowed according
to the definitions in this specification, then the element does not
define a link.
Two categories of links can be created using the
link
element. Links
to external resources are links to resources that are to be
used to augment the current document, and hyperlink links are links to
other documents. The link types
section defines whether a particular link type is an external
resource or a hyperlink. One element can create multiple links (of
which some might be external resource links and some might be
hyperlinks); exactly which and how many links are created depends on
the keywords given in the rel
attribute. User agents must process the links on a per-link basis,
not a per-element basis.
Each link is handled separately. For instance, if
there are two link
elements with rel="stylesheet"
, they each count as a separate
external resource, and each is affected by its own attributes
independently.
The exact behavior for links to external resources depends on the
exact relationship, as defined for the relevant link type. Some of
the attributes control whether or not the external resource is to be
applied (as defined below). For external
resources that are represented in the DOM (for example, style
sheets), the DOM representation must be made available even if the
resource is not applied. To obtain the resource, the user agent must
resolve the URL
given by the href
attribute,
relative to the element, and then fetch the resulting
absolute URL. User agents may opt to only
fetch such resources when they are needed, instead of
pro-actively fetching all the external
resources that are not applied.
The semantics of the protocol used (e.g. HTTP) must be followed when fetching external resources. (For example, redirects must be followed and 404 responses must cause the external resource to not be applied.)
Fetching external resources must delay the load event of the element's document until the task that is queued by the networking task source once the resource has been fetched (defined below) has been run.
The task that is queued by the networking task
source once the resource has been fetched must, if the loads were successful,
queue a task to fire a simple event called
load
at the link
element; otherwise, if the resource or one of its subresources
failed to completely load for any reason (e.g. DNS error, HTTP 404
response, a connection being prematurely closed, unsupported
Content-Type), it must instead queue a task to
fire a simple event called error
at the link
element. Non-network errors in processing the resource or its
subresources (e.g. CSS parse errors, PNG decoding errors) are not
failures for the purposes of this paragraph.
The task source for these tasks is the DOM manipulation task source.
Interactive user agents should provide users with a means to
follow the hyperlinks
created using the link
element, somewhere within their
user interface. The exact interface is not defined by this
specification, but it should include the following information
(obtained from the element's attributes, again as defined below), in
some form or another (possibly simplified), for each hyperlink
created with each link
element in the document:
rel
attribute)title
attribute).href
attribute).hreflang
attribute).media
attribute).User agents may also include other information, such as the type
of the resource (as given by the type
attribute).
Hyperlinks created with the link
element and its rel
attribute
apply to the whole page. This contrasts with the rel
attribute of a
and area
elements, which indicates the type of a link
whose context is given by the link's location within the
document.
The media
attribute says which media the resource applies to. The value must
be a valid media query. [MQ]
If the link is a hyperlink
then the media
attribute is
purely advisory, and describes for which media the document in
question was designed.
However, if the link is an external resource link,
then the media
attribute is
prescriptive. The user agent must apply the external resource to
views while their state match the listed
media and the other relevant conditions apply, and must not apply
them otherwise.
The external resource might have further
restrictions defined within that limit its applicability. For
example, a CSS style sheet might have some @media
blocks. This specification does not override
such further restrictions or requirements.
The default, if the media
attribute is omitted, is
all
, meaning that by default links apply to all
media.
The hreflang
attribute on the link
element has the same semantics as
the hreflang
attribute on hyperlink elements.
The type
attribute
gives the MIME type of the linked resource. It is purely advisory.
The value must be a valid MIME type, optionally with parameters. [RFC2046]
For external resource
links, the type
attribute
is used as a hint to user agents so that they can avoid fetching
resources they do not support. If the attribute
is present, then the user agent must assume that the resource is of
the given type. If the attribute is omitted, but the external
resource link type has a default type defined, then the user agent
must assume that the resource is of that type. If the UA does not
support the given MIME type for the given link relationship, then
the UA should not fetch the resource; if the UA does support the
given MIME type for the given link relationship, then the UA should
fetch the resource. If the attribute is omitted, and
the external resource link type does not have a default type
defined, but the user agent would fetch the resource if the type was
known and supported, then the user agent should fetch
the resource under the assumption that it will be
supported.
User agents must not consider the type
attribute authoritative —
upon fetching the resource, user agents must not use the type
attribute to determine its actual
type. Only the actual type (as defined in the next paragraph) is
used to determine whether to apply the resource, not the
aforementioned assumed type.
If the resource is expected to be an image, user agents may apply the image sniffing rules, with the official type being the type determined from the resource's Content-Type metadata, and use the resulting sniffed type of the resource as if it was the actual type. Otherwise, if the resource is not expected to be an image, or if the user agent opts not to apply those rules, then the user agent must use the resource's Content-Type metadata to determine the type of the resource. If there is no type metadata, but the external resource link type has a default type defined, then the user agent must assume that the resource is of that type.
Once the user agent has established the type of the resource, the user agent must apply the resource if it is of a supported type and the other relevant conditions apply, and must ignore the resource otherwise.
If a document contains style sheet links labeled as follows:
<link rel="stylesheet" href="A" type="text/plain"> <link rel="stylesheet" href="B" type="text/css"> <link rel="stylesheet" href="C">
...then a compliant UA that supported only CSS style sheets
would fetch the B and C files, and skip the A file (since
text/plain
is not the MIME type for CSS style
sheets).
For files B and C, it would then check the actual types returned
by the server. For those that are sent as text/css
, it
would apply the styles, but for those labeled as
text/plain
, or any other type, it would not.
If one the two files was returned without a
Content-Type metadata, or with a syntactically
incorrect type like Content-Type: "null"
, then the default type
for stylesheet
links would kick
in. Since that default type is text/css
, the
style sheet would nonetheless be applied.
The title
attribute gives the title of the link. With one exception, it is
purely advisory. The value is text. The exception is for style sheet
links, where the title
attribute defines alternative style sheet sets.
The title
attribute on link
elements differs from the global
title
attribute of most other
elements in that a link without a title does not inherit the title
of the parent element: it merely has no title.
The sizes
attribute is used
with the icon
link type. The attribute
must not be specified on link
elements that do not have
a rel
attribute that specifies
the icon
keyword.
Some versions of HTTP defined a Link:
header, to be processed like a series of link
elements.
If supported, for the purposes of ordering links defined by HTTP
headers must be assumed to come before any links in the document, in
the order that they were given in the HTTP entity header. (URIs in
these headers are to be processed and resolved according to the
rules given in HTTP; the rules of this specification don't
apply.) [HTTP] [RFC2068]
The DOM attributes href
, rel
, media
, hreflang
, and type
, and sizes
each must
reflect the respective content attributes of the same
name.
The DOM attribute relList
must reflect the rel
content attribute.
The DOM attribute disabled
only applies
to style sheet links. When the link
element defines a
style sheet link, then the disabled
attribute behaves as
defined for the alternative
style sheets DOM. For all other link
elements it
always return false and does nothing on setting.
meta
elementcharset
attribute is present, or if the element is in the Encoding declaration state: in a head
element.http-equiv
attribute is present, and the element is not in the Encoding declaration state: in a head
element.http-equiv
attribute is present, and the element is not in the Encoding declaration state: in a noscript
element that is a child of a head
element.name
attribute is present: where metadata content is expected.name
http-equiv
content
charset
interface HTMLMetaElement : HTMLElement { attribute DOMString content; attribute DOMString name; attribute DOMString httpEquiv; };
The meta
element represents various
kinds of metadata that cannot be expressed using the
title
, base
, link
,
style
, and script
elements.
The meta
element can represent document-level
metadata with the name
attribute, pragma directives with the http-equiv
attribute, and the
file's character encoding declaration when an HTML
document is serialized to string form (e.g. for transmission over
the network or for disk storage) with the charset
attribute.
Exactly one of the name
,
http-equiv
, and charset
attributes must be
specified.
If either name
or http-equiv
is specified, then
the content
attribute must
also be specified. Otherwise, it must be omitted.
The charset
attribute specifies the character encoding used by the
document. This is a character encoding declaration. If
the attribute is present in an XML
document, its value must be an ASCII
case-insensitive match for the string "UTF-8
" (and the document is therefore required to
use UTF-8 as its encoding).
The charset
attribute on the meta
element has no effect in XML
documents, and is only allowed in order to facilitate migration to
and from XHTML.
There must not be more than one meta
element with a
charset
attribute per
document.
The content
attribute gives the value of the document metadata or pragma
directive when the element is used for those purposes. The allowed
values depend on the exact context, as described in subsequent
sections of this specification.
If a meta
element has a name
attribute, it sets
document metadata. Document metadata is expressed in terms of
name/value pairs, the name
attribute on the meta
element giving the name, and the
content
attribute on the same
element giving the value. The name specifies what aspect of metadata
is being set; valid names and the meaning of their values are
described in the following sections. If a meta
element
has no content
attribute,
then the value part of the metadata name/value pair is the empty
string.
If a meta
element has the http-equiv
attribute specified,
it must be either in a head
element or in a
noscript
element that itself is in a head
element. If a meta
element does not have the http-equiv
attribute specified,
it must be in a head
element.
The DOM attributes name
and content
must
reflect the respective content attributes of the same
name. The DOM attribute httpEquiv
must
reflect the content attribute http-equiv
.
This specification defines a few names for the name
attribute of the
meta
element.
The value must be a short free-form string that giving the
name of the Web application that the page represents. If the page
is not a Web application, the application-name
metadata name
must not be used. User agents may use the
application name in UI in preference to the page's
title
, since the title might include status messages
and the like relevant to the status of the page at a particular
moment in time instead of just being the name of the
application.
The value must be a free-form string that describes the page. The value must be appropriate for use in a directory of pages, e.g. in a search engine.
The value must be a free-form string that identifies the software used to generate the document. This value must not be used on hand-authored pages.
Extensions to the predefined set of metadata names may be registered in the WHATWG Wiki MetaExtensions page.
Anyone is free to edit the WHATWG Wiki MetaExtensions page at any time to add a type. These new names must be specified with the following information:
The actual name being defined. The name should not be confusingly similar to any other defined name (e.g. differing only in case).
A short description of what the metadata name's meaning is, including the format the value is required to be in.
A list of other names that have exactly the same processing requirements. Authors should not use the names defined to be synonyms, they are only intended to allow user agents to support legacy content.
One of the following:
If a metadata name is added with the "proposal" status and found to be redundant with existing values, it should be removed and listed as a synonym for the existing value.
Conformance checkers must use the information given on the WHATWG Wiki MetaExtensions page to establish if a value not explicitly defined in this specification is allowed or not. When an author uses a new type not defined by either this specification or the Wiki page, conformance checkers should offer to add the value to the Wiki, with the details described above, with the "proposal" status.
This specification does not define how new values will get approved. It is expected that the Wiki will have a community that addresses this.
Metadata names whose values are to be URLs must not be proposed or accepted. Links must
be represented using the link
element, not the
meta
element.
When the http-equiv
attribute
is specified on a meta
element, the element is a pragma
directive.
The http-equiv
attribute is an enumerated attribute. The following
table lists the keywords defined for this attribute. The states
given in the first cell of the rows with keywords give the states to
which those keywords map. Some of the keywords
are non-conforming, as noted in the last column.
State | Keywords | Notes |
---|---|---|
Content Language | content-language
| Non-conforming |
Encoding declaration | content-type
| |
Default style | default-style
| |
Refresh | refresh
|
When a meta
element is inserted into the document, if its
http-equiv
attribute is
present and represents one of the above states, then the user agent
must run the algorithm appropriate for that state, as described in
the following list:
This non-conforming pragma sets the document-wide default language. Until the pragma is successfully processed, there is no document-wide default language.
If another meta
element in the Content Language
state has already been successfully processed (i.e. when
it was inserted the user agent processed it and reached the last
step of this list of steps), then abort these steps.
If the meta
element has no content
attribute, or if that
attribute's value is the empty string, then abort these
steps.
Let input be the value of the
element's content
attribute.
Let position point at the first character of input.
Collect a sequence of characters that are neither space characters nor a U+002C COMMA character (",").
Let the document-wide default language be the string that resulted from the previous step.
For meta
elements in the Content Language
state, the content
attribute must have a value consisting of a valid RFC 3066
language code. [RFC3066]
This pragma is not exactly equivalent to the HTTP
Content-Language
header, for instance it only
supports one language. [HTTP]
The Encoding
declaration state is just an alternative form of setting
the charset
attribute: it is a
character encoding declaration. This state's user agent requirements are all handled
by the parsing section of the specification.
For meta
elements in the Encoding declaration
state, the content
attribute must have a value that is an ASCII
case-insensitive match for a string that consists of: the
literal string "text/html;
", optionally
followed by any number of space
characters, followed by the literal string "charset=
", followed by the character encoding name
of the character encoding declaration.
If the document contains a meta
element in the
Encoding
declaration state, then the document must not contain a
meta
element with the charset
attribute present.
The Encoding declaration state may be used in HTML documents only, elements in that state must not be used in XML documents.
This pragma sets the name of the default alternative style sheet set.
This pragma acts as timed redirect.
If another meta
element in the Refresh state has
already been successfully processed (i.e. when it was inserted
the user agent processed it and reached the last step of this
list of steps), then abort these steps.
If the meta
element has no content
attribute, or if that
attribute's value is the empty string, then abort these
steps.
Let input be the value of the
element's content
attribute.
Let position point at the first character of input.
Collect a sequence of characters in the range U+0030 DIGIT ZERO to U+0039 DIGIT NINE, and parse the resulting string using the rules for parsing non-negative integers. If the sequence of characters collected is the empty string, then no number will have been parsed; abort these steps. Otherwise, let time be the parsed number.
Collect a
sequence of characters in the range U+0030 DIGIT ZERO to
U+0039 DIGIT NINE and U+002E FULL STOP (".
"). Ignore any collected characters.
Let url be the address of the current page.
If the character in input pointed to
by position is a U+003B SEMICOLON (";
"), then advance position to
the next character. Otherwise, jump to the last step.
If the character in input pointed to by position is one of U+0055 LATIN CAPITAL LETTER U or U+0075 LATIN SMALL LETTER U, then advance position to the next character. Otherwise, jump to the last step.
If the character in input pointed to by position is one of U+0052 LATIN CAPITAL LETTER R or U+0072 LATIN SMALL LETTER R, then advance position to the next character. Otherwise, jump to the last step.
If the character in input pointed to by position is one of U+004C LATIN CAPITAL LETTER L or U+006C LATIN SMALL LETTER L, then advance position to the next character. Otherwise, jump to the last step.
If the character in input pointed to
by position is a U+003D EQUALS SIGN ("=
"), then advance position to
the next character. Otherwise, jump to the last step.
If the character in input pointed to by position is either a U+0027 APOSTROPHE character (') or U+0022 QUOTATION MARK character ("), then let quote be that character, and advance position to the next character. Otherwise, let quote be the empty string.
Let url be equal to the substring of input from the character at position to the end of the string.
If quote is not the empty string, and there is a character in url equal to quote, then truncate url at that character, so that it and all subsequent characters are removed.
Strip any trailing space characters from the end of url.
Strip any U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), and U+000D CARRIAGE RETURN (CR) characters from url.
Resolve the url value to an absolute URL,
relative to the meta
element. If this fails, abort
these steps.
Perform one or more of the following steps:
Set a timer so that in time seconds, adjusted to take into account user or user agent preferences, if the user has not canceled the redirect, the user agent navigates the document's browsing context to url, with replacement enabled, and with the document's browsing context as the source browsing context.
Provide the user with an interface that, when selected, navigates a browsing context to url, with the document's browsing context as the source browsing context.
Do nothing.
In addition, the user agent may, as with anything, inform the user of any and all aspects of its operation, including the state of any timers, the destinations of any timed redirects, and so forth.
For meta
elements in the Refresh state, the
content
attribute must have
a value consisting either of:
;
), followed by one or
more space characters,
followed by either a U+0055 LATIN CAPITAL LETTER U or a U+0075
LATIN SMALL LETTER U, a U+0052 LATIN CAPITAL LETTER R or a U+0072
LATIN SMALL LETTER R, a U+004C LATIN CAPITAL LETTER L or a U+006C
LATIN SMALL LETTER L, a U+003D EQUALS SIGN (=
), and then a valid URL.In the former case, the integer represents a number of seconds before the page is to be reloaded; in the latter case the integer represents a number of seconds before the page is to be replaced by the page at the given URL.
There must not be more than one meta
element with
any particular state in the document at a time.
Extensions to the predefined set of pragma directives may, under certain conditions, be registered in the WHATWG Wiki PragmaExtensions page.
Such extensions must use a name that is identical to a previously-registered HTTP header defined in an RFC, and must have behavior identical to that described for the HTTP header. Pragma directions corresponding to headers describing metadata, or not requiring specific user agent processing, must not be registered; instead, use metadata names. Pragma directions corresponding to headers that affect the HTTP processing model (e.g. caching) must not be registered, as they would result in HTTP-level behavior being different for user agents that implement HTML than for user agents that do not.
Anyone is free to edit the WHATWG Wiki PragmaExtensions page at any time to add a pragma directive satisfying these conditions. Such registrations must specify the following information:
The actual name being defined.
A short description of the purpose of the pragma directive.
Conformance checkers must use the information given on the WHATWG Wiki PragmaExtensions page to establish if a value not explicitly defined in this specification is allowed or not.
A character encoding declaration is a mechanism by which the character encoding used to store or transmit a document is specified.
The following restrictions apply to character encoding declarations:
If an HTML document does not
start with a BOM, and if its encoding is not explicitly given by
Content-Type metadata, then the
character encoding used must be an ASCII-compatible character
encoding, and, in addition, if that encoding isn't US-ASCII
itself, then the encoding must be specified using a
meta
element with a charset
attribute or a
meta
element in the Encoding declaration
state.
If an HTML document contains
a meta
element with a charset
attribute or a
meta
element in the Encoding declaration
state, then the character encoding used must be an
ASCII-compatible character encoding.
Authors should not use JIS_X0212-1990, x-JIS0208, and encodings based on EBCDIC. Authors should not use UTF-32. Authors must not use the CESU-8, UTF-7, BOCU-1 and SCSU encodings. [CESU8] [UTF7] [BOCU1] [SCSU]
Authors are encouraged to use UTF-8. Conformance checkers may advise against authors using legacy encodings.
In XHTML, the XML declaration should be used for inline character encoding information, if necessary.
style
elementscoped
attribute is present: flow content.scoped
attribute is absent: where metadata content is expected.scoped
attribute is absent: in a noscript
element that is a child of a head
element.scoped
attribute is present: where flow content is expected, but before any other flow content other than other style
elements and inter-element whitespace.type
attribute.media
type
scoped
title
attribute has special semantics on this element.interface HTMLStyleElement : HTMLElement { attribute boolean disabled; attribute DOMString media; attribute DOMString type; attribute boolean scoped; };
The LinkStyle
interface must also be implemented
by this element, the styling processing model defines
how. [CSSOM]
The style
element allows authors to embed style
information in their documents. The style
element is
one of several inputs to the styling processing
model. The element does not represent content for the user.
If the type
attribute is given, it must contain a valid MIME type, optionally
with parameters, that designates a styling language. [RFC2046] If the attribute is absent, the
type defaults to text/css
. [RFC2138]
When examining types to determine if they support the language, user agents must not ignore unknown MIME parameters — types with unknown parameters must be assumed to be unsupported.
The media
attribute says which media the styles apply to. The value must be a
valid media query. [MQ]
User agents must apply the styles to views while their state match the listed media,
and must not apply them otherwise.
The styles might be further limited in scope,
e.g. in CSS with the use of @media
blocks. This specification does not override such further
restrictions or requirements.
The default, if the media
attribute is omitted, is
all
, meaning that by default styles apply to all
media.
The scoped
attribute is a boolean attribute. If set, it indicates
that the styles are intended just for the subtree rooted at the
style
element's parent element, as opposed to the whole
Document
.
If the scoped
attribute is
present, then the user agent must apply the specified style
information only to the style
element's parent element
(if any), and that element's child nodes. Otherwise, the specified
styles must, if applied, be applied to the entire document.
The title
attribute on
style
elements defines alternative style sheet
sets. If the style
element has no title
attribute, then it has no
title; the title
attribute of
ancestors does not apply to the style
element.
The title
attribute on style
elements, like the title
attribute on link
elements, differs from the global title
attribute in that a
style
block without a title does not inherit the title
of the parent element: it merely has no title.
All descendant elements must be processed, according to their
semantics, before the style
element itself is
evaluated. For styling languages that consist of pure text, user
agents must evaluate style
elements by passing the
concatenation of the contents of all the text nodes that are direct children of the
style
element (not any other nodes such as comments or
elements), in tree order, to the style system. For
XML-based styling languages, user agents must pass all the child
nodes of the style
element to the style system.
All URLs found by the styling language's processor must be resolved, relative to the element (or as defined by the styling language), when the processor is invoked.
Once the element has been evaluated, if it had no subresources or
once all the subresources it uses have been fetched, the user agent must queue a
task to fire a simple event called load
at the style
element. If
the resource has a subresource that fails to completely load for any
reason (e.g. DNS error, HTTP 404 response, the connection being
prematurely closed, unsupported Content-Type), the user agent must
instead queue a task to fire a simple
event called error
at the
style
element. Non-network errors in the processing of
the element's contents or its subresources (e.g. CSS parse errors)
are not failures for the purposes of this paragraph. The
style
element must delay the load event of
the element's document until one of these tasks has been queued.
The task source for these tasks is the DOM manipulation task source.
This specification does not specify a style system, but CSS is expected to be supported by most Web browsers. [CSS21]
The media
, type
and scoped
DOM attributes
must reflect the respective content attributes of the
same name.
The DOM disabled
attribute
behaves as defined for the
alternative style sheets DOM.
The link
and style
elements can provide
styling information for the user agent to use when rendering the
document. The DOM Styling specification specifies what styling
information is to be used by the user agent and how it is to be
used. [CSSOM]
The style
and link
elements implement
the LinkStyle
interface. [CSSOM]
For style
elements, if the user agent does not
support the specified styling language, then the sheet
attribute of the element's
LinkStyle
interface must return null. Similarly,
link
elements that do not represent external resource links that contribute to
the styling processing model (i.e. that do not have a stylesheet
keyword in their rel
attribute), and link
elements whose specified resource has not yet been fetched, or is
not in a supported styling language, must have their
LinkStyle
interface's sheet
attribute return null.
Otherwise, the LinkStyle
interface's sheet
attribute must return a
StyleSheet
object with the attributes implemented as
follows: [CSSOM]
type
DOM attribute)The content type must be the same as the style's specified
type. For style
elements, this is the same as the
type
content attribute's
value, or text/css
if that is omitted. For
link
elements, this is the Content-Type metadata of the specified
resource.
href
DOM attribute)For link
elements, the location must be the
result of resolving the
URL given by the element's href
content attribute, relative to
the element, or the empty string if that fails. For
style
elements, there is no location.
media
DOM attribute)The media must be the same as the value of the element's
media
content attribute.
title
DOM attribute)The title must be the same as the value of the element's
title
content attribute. If the
attribute is absent, then the style sheet does not have a
title. The title is used for defining alternative style sheet
sets.
The disabled
DOM
attribute on link
and style
elements must
return false and do nothing on setting, if the sheet
attribute of their
LinkStyle
interface is null. Otherwise, it must return
the value of the StyleSheet
interface's disabled
attribute on
getting, and forward the new value to that same attribute on
setting.
Scripts allow authors to add interactivity to their documents.
Authors are encouraged to use declarative alternatives to scripting where possible, as declarative mechanisms are often more maintainable, and many users disable scripting.
For example, instead of using script to show or hide a section
to show more details, the details
element could be
used.
Authors are also encouraged to make their applications degrade gracefully in the absence of scripting support.
For example, if an author provides a link in a table header to dynamically resort the table, the link could also be made to function without scripts by requesting the sorted table from the server.
script
elementsrc
attribute, depends on the value of the type
attribute.src
attribute, the element must be either empty or contain only
script documentation.src
async
defer
type
charset
interface HTMLScriptElement : HTMLElement { attribute DOMString src; attribute boolean async; attribute boolean defer; attribute DOMString type; attribute DOMString charset; attribute DOMString text; };
The script
element allows authors to include dynamic
script and data blocks in their documents. The element does not
represent content for the user.
When used to include dynamic scripts, the scripts may either be
embedded inline or may be imported from an external file using the
src
attribute. If the language
is not that described by "text/javascript
",
then the type
attribute must
be present. If the type
attribute is present, its value must be the type of the script's
language.
When used to include data blocks, the data must be embedded
inline, the format of the data must be given using the type
attribute, and the src
attribute must not be
specified.
The type
attribute gives the language of the script or format of the data. If
the attribute is present, its value must be a valid MIME type,
optionally with parameters. The charset
parameter must not be specified. (The default, which is used if the
attribute is absent, is "text/javascript
".) [RFC2046]
The src
attribute, if specified, gives the address of the external script
resource to use. The value of the attribute must be a valid
URL identifying a script resource of the type given by the
type
attribute, if the
attribute is present, or of the type "text/javascript
", if the attribute is absent.
The charset
attribute gives the character encoding of the external script
resource. The attribute must not be specified if the src
attribute is not present. If the
attribute is set, its value must be a valid character encoding name,
must be the preferred name for that encoding, and must match the
encoding given in the charset
parameter of the
Content-Type metadata of the
external file, if any. [IANACHARSET]
The async
and
defer
attributes
are boolean attributes that
indicate how the script should be executed.
There are three possible modes that can be selected using these
attributes. If the async
attribute is present, then the script will be executed
asynchronously, as soon as it is available. If the async
attribute is not present but
the defer
attribute is
present, then the script is executed when the page has finished
parsing. If neither attribute is present, then the script is
fetched and executed immediately, before the user agent continues
parsing the page. The exact processing details for these attributes
is described below.
The defer
attribute may be
specified even if the async
attribute is specified, to cause legacy Web browsers that only
support defer
(and not async
) to fall back to the defer
behavior instead of the
synchronous blocking behavior that is the default.
Changing the src
, type
, charset
, async
, and defer
attributes dynamically has no
direct effect; these attribute are only used at specific times
described below (namely, when the element is inserted into the document).
script
elements have four associated pieces of
metadata. The first is a flag indicating whether or not the script
block has been "already executed". Initially,
script
elements must have this flag unset (script
blocks, when created, are not "already executed"). When a
script
element is cloned, the "already executed" flag,
if set, must be propagated to the clone when it is created. The
second is a flag indicating whether the element was
"parser-inserted". This flag is set by the HTML
parser and is used to handle document.write()
calls. The third
and fourth pieces of metadata are the script block's
type and the script block's character
encoding. They are determined when the script is run,
based on the attributes on the element at that time.
When a script
element that is neither marked as
having "already executed" nor marked as being
"parser-inserted" experiences one of the events listed
in the following list, the user agent must run the script
element:
script
element gets inserted into a document.script
element's child nodes are changed.script
element has a src
attribute set where previously
the element had no such attribute.Running a script: When a
script
element is to be run, the user agent must act as
follows:
If either:
script
element has a type
attribute and its value is
the empty string, orscript
element has no type
attribute but it has a language
attribute and
that attribute's value is the empty string, orscript
element has neither a type
attribute nor a language
attribute, then...let the script block's type for this
script
element be "text/javascript
".
Otherwise, if the script
element has a type
attribute, let the
script block's type for this script
element be
the value of that attribute.
Otherwise, the element has a non-empty language
attribute; let
the script block's type for this script
element be the concatenation of the string "text/
" followed by the value of the language
attribute.
The language
attribute is never
conforming, and is always ignored if there is a type
attribute present.
If the script
element has a charset
attribute, then let
the script block's character encoding for this
script
element be the encoding given by the charset
attribute.
Otherwise, let the script block's character encoding
for this script
element be the same as the encoding of the document
itself.
If scripting is
disabled for the script
element, or if the
user agent does not support the scripting language
given by the script block's type for this
script
element, then the user agent must abort these
steps at this point. The script is not executed.
If the element has no src
attribute, and its child nodes consist only of comment nodes and
empty text nodes, then the user
agent must abort these steps at this point. The script is not
executed.
The user agent must set the element's "already executed" flag.
If the element has a src
attribute, then the value of that attribute must be resolved relative to the element, and
if that is successful, the specified resource must then be fetched.
For historical reasons, if the URL is a javascript:
URL, then the user agent must not, despite the requirements
in the definition of the fetching
algorithm, actually execute the given script; instead the user
agent must act as if it had received an empty HTTP 400
response.
Once the resource's Content Type metadata is available, if it ever is, apply the algorithm for extracting an encoding from a Content-Type to it. If this returns an encoding, and the user agent supports that encoding, then let the script block's character encoding be that encoding.
Once the fetching process has completed, and the script has completed loading, the user agent will have to complete the steps described below. (If the parser is still active at that time, those steps defer to the parser to handle the execution of pending scripts.)
For performance reasons, user agents may start fetching the
script as soon as the attribute is set, instead, in the hope that
the element will be inserted into the document. Either way, once
the element is inserted into the document, the load must have
started. If the UA performs such prefetching, but the element is
never inserted in the document, or the src
attribute is dynamically
changed, then the
user agent will not execute the script, and the fetching process
will have been effectively wasted.
Then, the first of the following options that describes the situation must be followed:
defer
attribute, and the
element does not have an async
attributeThis isn't compatible with IE for inline deferred scripts, but then what IE does is pretty hard to pin down exactly. Do we want to keep this like it is? Be more compatible?
async
attribute and a src
attributeasync
attribute but no src
attribute, and the list
of scripts that will execute asynchronously is not
emptysrc
attribute and has been flagged as
"parser-inserted"src
attributeFetching an external script must delay the load event of the element's document until the task that is queued by the networking task source once the resource has been fetched (defined below) has been run.
When a script completes loading: If the
script
element was added to one of the lists mentioned
above and the document is still being parsed, then the parser
handles it. Otherwise, the UA must run the following steps as the
task that the networking
task source places on the task queue:
script
element was added to the list
of scripts that will execute when the document has finished
parsing:If the script
element is not the first element
in the list, then do nothing yet. Stop going through these
steps.
Otherwise, execute the script block (the first element in the list).
Remove the script
element from the list
(i.e. shift out the first entry in the list).
If there are any more entries in the list, and if the script associated with the element that is now the first in the list is already loaded, then jump back to step two to execute it.
script
element was added to the list
of scripts that will execute asynchronously:If the script is not the first element in the list, then do nothing yet. Stop going through these steps.
Execute the script block (the first element in the list).
Remove the script
element from the list
(i.e. shift out the first entry in the list).
If there are any more scripts in the list, and the element
now at the head of the list had no src
attribute when it was added
to the list, or had one, but its associated script has finished
loading, then jump back to step two to execute the script
associated with this element.
script
element was added to the list
of scripts that will execute as soon as possible:Remove the script
element from the list.
Executing a script block: When the steps above require that the script block be executed, the user agent must act as follows:
Executing the script block must just consist of firing a simple event called
error
at the element.
Initialize the script block's source as follows:
The contents of that file, interpreted as string of Unicode characters, are the script source.
For each of the rows in the following table, starting with the first one and going down, if the file has as many or more bytes available than the number of bytes in the first column, and the first bytes of the file match the bytes given in the first column, then set the script block's character encoding to the encoding given in the cell in the second column of that row, irrespective of any previous value:
Bytes in Hexadecimal | Encoding |
---|---|
FE FF | UTF-16BE |
FF FE | UTF-16LE |
EF BB BF | UTF-8 |
This step looks for Unicode Byte Order Marks (BOMs).
The file must then be converted to Unicode using the character encoding given by the script block's character encoding.
The value of the DOM text
attribute at the time the
"running a script" algorithm was first invoked is
the script source.
The child nodes of the script
element at the
time the "running a script" algorithm was first
invoked are the script source.
Create a
script from the script
element node, using
the the script block's source and the the script
block's type.
This is where the script is compiled and actually executed.
Fire a simple event called load
at the script
element.
The DOM attributes src
, type
, charset
, async
, and defer
, each must
reflect the respective content attributes of the same
name.
text
[ = value ]Returns the contents of the element, ignoring child nodes that aren't text nodes.
Can be set, to replace the element's children with the given value.
The DOM attribute text
must return a
concatenation of the contents of all the text nodes that are direct children of the
script
element (ignoring any other nodes such as
comments or elements), in tree order. On setting, it must act the
same way as the textContent
DOM attribute.
In this example, two script
elements are used. One
embeds an external script, and the other includes some data.
<script src="game-engine.js"></script> <script type="text/x-game-map"> ........U.........e o............A....e .....A.....AAA....e .A..AAA...AAAAA...e </script>
The data in this case might be used by the script to generate the map of a video game. The data doesn't have to be used that way, though; maybe the map data is actually embedded in other parts of the page's markup, and the data block here is just used by the site's search engine to help users who are looking for particular features in their game maps.
When inserted using the document.write()
method,
script
elements execute (typically synchronously), but
when inserted using innerHTML
and outerHTML
attributes, they do not
execute at all.
A user agent is said to support the scripting language if the script block's type matches the MIME type of a scripting language that the user agent implements.
The following lists some MIME types and the languages to which they refer:
application/ecmascript
application/javascript
application/x-ecmascript
application/x-javascript
text/ecmascript
text/javascript
text/javascript1.0
text/javascript1.1
text/javascript1.2
text/javascript1.3
text/javascript1.4
text/javascript1.5
text/jscript
text/livescript
text/x-ecmascript
text/x-javascript
text/javascript;e4x=1
User agents may support other MIME types and other languages.
When examining types to determine if they support the language, user agents must not ignore unknown MIME parameters — types with unknown parameters must be assumed to be unsupported.
If a script
element's src
attribute is specified, then the
contents of the script
element, if any, must be such
that the value of the DOM text
attribute, which is derived from the element's contents, matches the
documentation
production in the following
ABNF, the character set for which is Unicode. [ABNF]
documentation = *( *( space / tab / comment ) [ line-comment ] newline ) comment = slash star *( not-star / star not-slash ) 1*star slash line-comment = slash slash *not-newline ; characters tab = %x0009 ; U+0009 TAB newline = %x000A ; U+000A LINE FEED space = %x0020 ; U+0020 SPACE star = %x002A ; U+002A ASTERISK slash = %x002F ; U+002F SOLIDUS not-newline = %x0000-0009 / %x000B-%10FFFF ; a Unicode character other than U+000A LINE FEED not-star = %x0000-0029 / %x002B-%10FFFF ; a Unicode character other than U+002A ASTERISK not-slash = %x0000-002E / %x0030-%10FFFF ; a Unicode character other than U+002F SOLIDUS
This allows authors to include documentation, such as license
information or API information, inside their documents while still
referring to external script files. The syntax is constrained so
that authors don't accidentally include what looks like valid
script while also providing a src
attribute.
<script src="cool-effects.js"> // create new instances using: // var e = new Effect(); // start the effect using .play, stop using .stop: // e.play(); // e.stop(); </script>
noscript
elementhead
element of an HTML document, if there are no ancestor noscript
elements.noscript
elements.head
element: in any order, zero or more link
elements, zero or more style
elements, and zero or more meta
elements.head
element: transparent, but there must be no noscript
element descendants.HTMLElement
.The noscript
element represents nothing
if scripting is enabled, and
represents its children if scripting is disabled. It is used
to present different markup to user agents that support scripting
and those that don't support scripting, by affecting how the
document is parsed.
When used in HTML documents, the allowed content model is as follows:
head
element, if scripting is disabled for the
noscript
elementThe noscript
element must contain only
link
, style
, and meta
elements.
head
element, if scripting is enabled for the
noscript
elementThe noscript
element must contain only text,
except that invoking the HTML fragment parsing
algorithm with the noscript
element as the context element and the text contents as the input must result in a list of nodes that consists
only of link
, style
, and
meta
elements, and no parse
errors.
head
elements, if scripting is disabled for the
noscript
elementThe noscript
element's content model is
transparent, with the additional restriction that a
noscript
element must not have a noscript
element as an ancestor (that is, noscript
can't be
nested).
head
elements, if scripting is enabled for the
noscript
elementThe noscript
element must contain only text,
except that the text must be such that running the following
algorithm results in a conforming document with no
noscript
elements and no script
elements, and such that no step in the algorithm causes an
HTML parser to flag a parse error:
script
element from the
document.noscript
element in the
document. For every noscript
element in that list,
perform the following steps:
noscript
element.noscript
element, and call these
elements the before children.noscript
element, and
call these elements the after children.noscript
element.innerHTML
attribute of the parent element to the value
of s. (This, as a side-effect, causes the
noscript
element to be removed from the
document.)All these contortions are required because, for
historical reasons, the noscript
element is handled
differently by the HTML parser based on whether scripting was enabled or not when the
parser was invoked. The element is not allowed in XML, because in
XML the parser is not affected by such state, and thus the element
would not have the desired effect.
The noscript
element must not be used in XML
documents.
The noscript
element is only
effective in the HTML serialization,
it has no effect in the XML serialization.
The noscript
element has no other requirements. In
particular, children of the noscript
element are not
exempt from form submission, scripting, and so forth,
even when scripting is enabled
for the element.
Some elements, for example
address
elements, are scoped to their nearest ancestor
sectioning content. For such elements x, the elements that apply to a sectioning
content element e are all the x elements whose nearest sectioning
content ancestor is e.
body
elementhtml
element.onafterprint
onbeforeprint
onbeforeunload
onblur
onerror
onfocus
onhashchange
onload
onmessage
onoffline
ononline
onpopstate
onredo
onresize
onstorage
onundo
onunload
interface HTMLBodyElement : HTMLElement { attribute Function onafterprint; attribute Function onbeforeprint; attribute Function onbeforeunload; attribute Function onblur; attribute Function onerror; attribute Function onfocus; attribute Function onhashchange; attribute Function onload; attribute Function onmessage; attribute Function onoffline; attribute Function ononline; attribute Function onpopstate; attribute Function onredo; attribute Function onresize; attribute Function onstorage; attribute Function onundo; attribute Function onunload; };
The body
element represents the main
content of the document.
In conforming documents, there is only one body
element. The document.body
DOM attribute provides scripts with easy access to a document's
body
element.
Some DOM operations (for example, parts of the
drag and drop model) are defined in terms of "the
body element". This refers to a particular element in the
DOM, as per the definition of the term, and not any arbitrary
body
element.
The body
element exposes as event handler
content attributes a number of the event handler
attributes of the Window
object. It also mirrors
their event handler DOM attributes.
The onerror
and onload
event handler
attributes of the Window
object, exposed on the
body
element, shadow the generic onerror
and onload
event handler
attributes normally supported by HTML
elements.
Thus, for example, a bubbling error
event fired on a child of the
body element of a Document
would first trigger
the onerror
event handler
content attributes of that element, then that of the root
html
element, and only then would it trigger
the onerror
event handler content
attribute on the body
element. This is because
the event would bubble from the target, to the body
, to
the html
, to the Document
, to the
Window
, and the event handler attribute on
the body
is watching the Window
not the
body
. A regular event listener attached to the
body
using addEventListener()
,
however, would fire when the event bubbled through the
body
and not when it reaches the Window
object.
section
elementHTMLElement
.The section
element represents a
generic document or application section. A section, in this context,
is a thematic grouping of content, typically with a heading, possibly
with a footer.
Examples of sections would be chapters, the various tabbed pages in a tabbed dialog box, or the numbered sections of a thesis. A Web site's home page could be split into sections for an introduction, news items, contact information.
In the following example, we see an article (part of a larger Web page) about apples, containing two short sections.
<article> <hgroup> <h1>Apples</h1> <h2>Tasty, delicious fruit!</h2> </hgroup> <p>The apple is the pomaceous fruit of the apple tree.</p> <section> <h1>Red Delicious</h1> <p>These bright red apples are the most common found in many supermarkets.</p> </section> <section> <h1>Granny Smith</h1> <p>These juicy, green apples and make a great filling for apple pies.</p> </section> </article>
Notice how the use of section
means that the author
can use h1
elements throughout, without having to
worry about whether a particular section is at the top level, the
second level, the third level, and so on.
nav
elementHTMLElement
.The nav
element represents a section of
a page that links to other pages or to parts within the page: a
section with navigation links. Not all groups of links on a page
need to be in a nav
element — only sections that
consist of primary navigation blocks are appropriate for the
nav
element. In particular, it is common for footers to
have a list of links to various key parts of a site, but the
footer
element is more appropriate in such cases.
In the following example, the page has several places where links are present, but only one of those places is considered a navigation section.
<body> <header> <h1>Wake up sheeple!</h1> <p><a href="news.html">News</a> - <a href="blog.html">Blog</a> - <a href="forums.html">Forums</a></p> <p>Last Modified: <time>2009-04-01</time></p> <nav> <h1>Navigation</h1> <ul> <li><a href="articles.html">Index of all articles</a></li> <li><a href="today.html">Things sheeple need to wake up for today</a></li> <li><a href="successes.html">Sheeple we have managed to wake</a></li> </ul> </nav> </header> <article> <p>...page content would be here...</p> </article> <footer> <p>Copyright © 2006 The Example Company</p> <p><a href="about.html">About</a> - <a href="policy.html">Privacy Policy</a> - <a href="contact.html">Contact Us</a></p> </footer> </body>
article
elementHTMLElement
.The article
element represents a
section of a page that consists of a composition that forms an
independent part of a document, page, or site. This could be a forum
post, a magazine or newspaper article, a Web log entry, a
user-submitted comment, or any other independent item of
content.
An article
element is "independent" in
that its contents could stand alone, for example in syndication.
However, the element is still associated with its ancestors; for
instance, contact information that applies to a parent body
element still covers the article
as well.
When article
elements are nested, the inner
article
elements represent articles that are in
principle related to the contents of the outer article. For
instance, a Web log entry on a site that accepts user-submitted
comments could represent the comments as article
elements nested within the article
element for the Web
log entry.
Author information associated with an article
element (q.v. the address
element) does not apply to
nested article
elements.
aside
elementHTMLElement
.The aside
element represents a section
of a page that consists of content that is tangentially related to
the content around the aside
element, and which could
be considered separate from that content. Such sections are often
represented as sidebars in printed typography.
The following example shows how an aside is used to mark up background material on Switzerland in a much longer news story on Europe.
<aside> <h1>Switzerland</h1> <p>Switzerland, a land-locked country in the middle of geographic Europe, has not joined the geopolitical European Union, though it is a signatory to a number of European treaties.</p> </aside>
The following example shows how an aside is used to mark up a pull quote in a longer article.
... <p>He later joined a large company, continuing on the same work. <q>I love my job. People ask me what I do for fun when I'm not at work. But I'm paid to do my hobby, so I never know what to answer. Some people wonder what they would do if they didn't have to work... but I know what I would do, because I was unemployed for a year, and I filled that time doing exactly what I do now.</q></p> <aside> <q> People ask me what I do for fun when I'm not at work. But I'm paid to do my hobby, so I never know what to answer. </q> </aside> <p>Of course his work — or should that be hobby? — isn't his only passion. He also enjoys other pleasures.</p> ...
h1
, h2
,
h3
, h4
,
h5
, and h6
elementsHTMLElement
.These elements represent headings for their sections.
The semantics and meaning of these elements are defined in the section on headings and sections.
These elements have a rank given by the number in
their name. The h1
element is said to have the highest
rank, the h6
element has the lowest rank, and two
elements with the same name have equal rank.
hgroup
elementh1
, h2
, h3
, h4
, h5
, and/or h6
elements.HTMLElement
.The hgroup
element represents the
heading of a section. The element is used to group a set of
h1
–h6
elements when the heading has
multiple levels, such as subheadings, alternative titles, or
taglines.
For the purposes of document summaries, outlines, and the like,
the text of hgroup
elements is defined to be the text
of the highest ranked
h1
–h6
element descendant of the
hgroup
element, if there are any such elements, and the
first such element if there are multiple elements with that
rank. If there are no such elements, then the text of
the hgroup
element is the empty string.
Other elements of heading content in the
hgroup
element indicate subheadings or subtitles.
The rank of an hgroup
element is the
same as for an h1
element (the highest rank).
The section on headings and sections
defines how hgroup
elements are assigned to individual
sections.
Here are some examples of valid headings. In each case, the emphasized text represents the text that would be used as the heading in an application extracting heading data and ignoring subheadings.
<hgroup> <h1>The reality dysfunction</h1> <h2>Space is not the only void</h2> </hgroup>
<hgroup> <h1>Dr. Strangelove</h1> <h2>Or: How I Learned to Stop Worrying and Love the Bomb</h2> </hgroup>
header
elementheader
or
footer
element descendants.HTMLElement
.The header
element represents a group
of introductory or navigational aids. A header
element
typically contains the section's heading (an
h1
–h6
element or an
hgroup
element), but can also contain other content,
such as a table of contents, a search form, or any relevant
logos.
Here are some sample headers. This first one is for a game:
<header> <p>Welcome to...</p> <h1>Voidwars!</h1> </header>
The following snippet shows how the element can be used to mark up a specification's header:
<header> <hgroup> <h1>Scalable Vector Graphics (SVG) 1.2</h1> <h2>W3C Working Draft 27 October 2004</h2> </hgroup> <dl> <dt>This version:</dt> <dd><a href="http://www.w3.org/TR/2004/WD-SVG12-20041027/">http://www.w3.org/TR/2004/WD-SVG12-20041027/</a></dd> <dt>Previous version:</dt> <dd><a href="http://www.w3.org/TR/2004/WD-SVG12-20040510/">http://www.w3.org/TR/2004/WD-SVG12-20040510/</a></dd> <dt>Latest version of SVG 1.2:</dt> <dd><a href="http://www.w3.org/TR/SVG12/">http://www.w3.org/TR/SVG12/</a></dd> <dt>Latest SVG Recommendation:</dt> <dd><a href="http://www.w3.org/TR/SVG/">http://www.w3.org/TR/SVG/</a></dd> <dt>Editor:</dt> <dd>Dean Jackson, W3C, <a href="mailto:dean@w3.org">dean@w3.org</a></dd> <dt>Authors:</dt> <dd>See <a href="#authors">Author List</a></dd> </dl> <p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notic ... </header>
The header
element is not
sectioning content; it doesn't introduce a new
section.
In this example, the page has a page heading given by the
h1
element, and two subsections whose headings are
given by h2
elements. The content after the
header
element is still part of the last subsection
started in the header
element, because the
header
element doesn't take part in the
outline algorithm.
<body> <header> <h1>Little Green Guys With Guns</h1> <nav> <ul> <li><a href="/games">Games</a> | <li><a href="/forum">Forum</a> | <li><a href="/download">Download</a> </ul> </nav> <h2>Important News</h2> <!-- this starts a second subsection --> <!-- this is part of the subsection entitled "Important News" --> <p>To play today's games you will need to update your client.</p> <h2>Games</h2> <!-- this starts a second subsection --> </header> <p>You have three active games:</p> <!-- this is still part of the subsection entitled "Games" --> ...
footer
elementheader
or footer
element descendants.HTMLElement
.The footer
element represents a footer
for the section it applies to. A
footer typically contains information about its section such as who
wrote it, links to related documents, copyright data, and the
like.
Contact information for the section to which the
footer
element applies
should be marked up using the address
element.
Footers don't necessarily have to appear at the end of a section, though they usually do.
The footer
element is inappropriate for containing
entire sections. For appendices, indexes, long colophons, verbose
license agreements, and other such content which needs sectioning
with headings and so forth, regular section
elements
should be used, not a footer
.
Here is a page with two footers, one at the top and one at the bottom, with the same content:
<body> <footer><a href="../">Back to index...</a></footer> <hgroup> <h1>Lorem ipsum</h1> <h2>The ipsum of all lorems</h2> </hgroup> <p>A dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.</p> <footer><a href="../">Back to index...</a></footer> </body>
address
elementheader
, footer
, or
address
element descendants.HTMLElement
.The address
element represents the
contact information for the section it applies to. If it applies to the
body element, then it instead applies to the document as a
whole.
For example, a page at the W3C Web site related to HTML might include the following contact information:
<ADDRESS> <A href="../People/Raggett/">Dave Raggett</A>, <A href="../People/Arnaud/">Arnaud Le Hors</A>, contact persons for the <A href="Activity">W3C HTML Activity</A> </ADDRESS>
The address
element must not be used to represent
arbitrary addresses (e.g. postal addresses), unless those addresses
are contact information for the section. (The p
element
is the appropriate element for marking up such addresses.)
The address
element must not contain information
other than contact information.
For example, the following is non-conforming use of the
address
element:
<ADDRESS>Last Modified: 1999/12/24 23:37:50</ADDRESS>
Typically, the address
element would be included
with other information in a footer
element.
To determine the contact information for a sectioning
content element (such as a document's body
element, which would give the contact information for the page), UAs
must collect all the address
elements that apply to that sectioning
content element and its ancestor sectioning
content elements. The contact information is the collection
of all the information given by those elements.
Contact information for one sectioning
content element, e.g. an aside
element, does
not apply to its ancestor elements, e.g. the page's
body
.
The h1
–h6
elements and the
hgroup
element are headings.
The first element of heading content in an element of sectioning content represents the heading for that section. Subsequent headings of equal or higher rank start new (implied) sections, headings of lower rank start implied subsections that are part of the previous one. In both cases, the element represents the heading of the implied section.
Sectioning content elements are always considered subsections of their nearest ancestor element of sectioning content, regardless of what implied sections other headings may have created.
Certain elements are said to be sectioning roots, including blockquote
and
td
elements. These elements can have their own
outlines, but the sections and headings inside these elements do not
contribute to the outlines of their ancestors.
For the following fragment:
<body> <h1>Foo</h1> <h2>Bar</h2> <blockquote> <h3>Bla</h3> </blockquote> <p>Baz</p> <h2>Quux</h2> <section> <h3>Thud</h3> </section> <p>Grunt</p> </body>
...the structure would be:
body
section, containing the "Grunt" paragraph)
section
section)
Notice how the section
ends the earlier implicit
section so that a later paragraph ("Grunt") is back at the top
level.
Sections may contain headings of any rank, but
authors are strongly encouraged to either use only h1
elements, or to use elements of the appropriate rank
for the section's nesting level.
Authors are also encouraged to explicitly wrap sections in elements of sectioning content, instead of relying on the implicit sections generated by having multiple headings in one element of sectioning content.
For example, the following is correct:
<body> <h4>Apples</h4> <p>Apples are fruit.</p> <section> <h2>Taste</h2> <p>They taste lovely.</p> <h6>Sweet</h6> <p>Red apples are sweeter than green ones.</p> <h1>Color</h1> <p>Apples come in various colors.</p> </section> </body>
However, the same document would be more clearly expressed as:
<body> <h1>Apples</h1> <p>Apples are fruit.</p> <section> <h2>Taste</h2> <p>They taste lovely.</p> <section> <h3>Sweet</h3> <p>Red apples are sweeter than green ones.</p> </section> </section> <section> <h2>Color</h2> <p>Apples come in various colors.</p> </section> </body>
Both of the documents above are semantically identical and would produce the same outline in compliant user agents.
This section defines an algorithm for creating an outline for a sectioning content element or a sectioning root element. It is defined in terms of a walk over the nodes of a DOM tree, in tree order, with each node being visited when it is entered and when it is exited during the walk.
The outline for a sectioning content
element or a sectioning root element consists of a list
of one or more potentially nested sections. A section is a container that
corresponds to some nodes in the original DOM tree. Each section can
have one heading associated with it, and can contain any number of
further nested sections. The algorithm for the
outline also associates each node in the DOM tree with a particular
section and potentially a heading. (The sections in the
outline aren't section
elements, though some may
correspond to such elements — they are merely conceptual
sections.)
The following markup fragment:
<body> <h1>A</h1> <p>B</p> <h2>C</h2> <p>D</p> <h2>E</h2> <p>F</p> </body>
...results in the following outline being created for the
body
node (and thus the entire document):
Section created for body
node.
Associated with heading "A".
Also associated with paragraph "B".
Nested sections:
The algorithm that must be followed during a walk of a DOM subtree rooted at a sectioning content element or a sectioning root element to determine that element's outline is as follows:
Let current outlinee be null. (It holds the element whose outline is being created.)
Let current section be null. (It holds a pointer to a section, so that elements in the DOM can all be associated with a section.)
Create a stack to hold elements, which is used to handle nesting. Initialize this stack to empty.
As you walk over the DOM in tree order, trigger the first relevant step below for each element as you enter and exit it.
The element being exited is a heading content element.
Pop that element from the stack.
Do nothing.
If current outlinee is not null, push current outlinee onto the stack.
Let current outlinee be the element that is being entered.
Let current section be a newly created section for the current outlinee element.
Let there be a new outline for the new current outlinee, initialized with just the new current section as the only section in the outline.
Pop the top element from the stack, and let the current outlinee be that element.
Let current section be the last section in the outline of the current outlinee element.
Append the outline of the sectioning content element being exited to the current section. (This does not change which section is the last section in the outline.)
Run these steps:
Pop the top element from the stack, and let the current outlinee be that element.
Let current section be the last section in the outline of the current outlinee element.
Finding the deepest child: If current section has no child sections, stop these steps.
Let current section be the last child section of the current current section.
Go back to the substep labeled finding the deepest child.
The current outlinee is the element being exited.
Let current section be the first section in the outline of the current outlinee element.
Skip to the next step in the overall set of steps. (The walk is over.)
Do nothing.
If the current section has no heading, let the element being entered be the heading for the current section.
Otherwise, if the element being entered has a rank equal to or greater than the heading of the last section of the outline of the current outlinee, then create a new section and append it to the outline of the current outlinee element, so that this new section is the new last section of that outline. Let current section be that new section. Let the element being entered be the new heading for the current section.
Otherwise, run these substeps:
Let candidate section be current section.
If the element being entered has a rank lower than the rank of the heading of the candidate section, then create a new section, and append it to candidate section. (This does not change which section is the last section in the outline.) Let current section be this new section. Let the element being entered be the new heading for the current section. Abort these substeps.
Let new candidate section be the section that contains candidate section in the outline of current outlinee.
Let candidate section be new candidate section.
Return to step 2.
Push the element being entered onto the stack. (This causes the algorithm to skip any descendants of the element.)
Recall that h1
has the
highest rank, and h6
has the lowest
rank.
Do nothing.
In addition, whenever you exit a node, after doing the steps above, if current section is not null, associate the node with the section current section.
If the current outlinee is null, then there was no sectioning content element or sectioning root element in the DOM. There is no outline. Abort these steps.
Associate any nodes that were not associated with a section in the steps above with current outlinee as their section.
Associate all nodes with the heading of the section with which they are associated, if any.
If current outlinee is the body element, then the outline created for that element is the outline of the entire document.
The tree of sections created by the algorithm above, or a proper subset thereof, must be used when generating document outlines, for example when generating tables of contents.
When creating an interactive table of contents, entries should jump the user to the relevant sectioning content element, if the section was created for a real element in the original document, or to the relevant heading content element, if the section in the tree was generated for a heading in the above process.
Selecting the first section of the document therefore
always takes the user to the top of the document, regardless of
where the first heading in the body
is to be found.
The following JavaScript function shows how the tree walk could be implemented. The root argument is the root of the tree to walk, and the enter and exit arguments are callbacks that are called with the nodes as they are entered and exited. [ECMA262]
function (root, enter, exit) { var node = root; start: while (node) { enter(node); if (node.firstChild) { node = node.firstChild; continue start; } while (node) { exit(node); if (node.nextSibling) { node = node.nextSibling; continue start; } if (node == root) node = null; else node = node.parentNode; } } }
Given the outline of a document, but ignoring any
sections created for nav
and aside
elements, and any of their descendants, if the only root of the tree
is the body element's section, and it has only a single
subsection which is created by an article
element, then
the heading of the body element should be assumed to be
a site-wide heading, and the heading of the article
element should be assumed to be the page's heading.
If a page starts with a heading that is common to the whole site,
the document must be authored such that, in the document's
outline, ignoring any sections created for
nav
and aside
elements and any of their
descendants, the tree has only one root section, the body
element's section, its heading is the site-wide heading,
the body element has just one subsection, that
subsection is created by an article
element, and that
article
's heading is the page heading.
If a page does not contain a site-wide heading, then the page
must be authored such that, in the document's outline,
ignoring any sections created for nav
and
aside
elements and any of their descendants, either
the body element has no subsections, or it has more
than one subsection, or it has a single subsection but that
subsection is not created by an article
element, or
there is more than one section
at the root of the outline.
Conceptually, a site is thus a document with many articles — when those articles are split into many pages, the heading of the original single page becomes the heading of the site, repeated on every page.
p
elementHTMLElement
.The p
element represents a
paragraph.
The following examples are conforming HTML fragments:
<p>The little kitten gently seated himself on a piece of carpet. Later in his life, this would be referred to as the time the cat sat on the mat.</p>
<fieldset> <legend>Personal information</legend> <p> <label>Name: <input name="n"></label> <label><input name="anon" type="checkbox"> Hide from other users</label> </p> <p><label>Address: <textarea name="a"></textarea></label></p> </fieldset>
<p>There was once an example from Femley,<br> Whose markup was of dubious quality.<br> The validator complained,<br> So the author was pained,<br> To move the error from the markup to the rhyming.</p>
The p
element should not be used when a more
specific element is more appropriate.
The following example is technically correct:
<section> <!-- ... --> <p>Last modified: 2001-04-23</p> <p>Author: fred@example.com</p> </section>
However, it would be better marked-up as:
<section> <!-- ... --> <footer>Last modified: 2001-04-23</footer> <address>Author: fred@example.com</address> </section>
Or:
<section> <!-- ... --> <footer> <p>Last modified: 2001-04-23</p> <address>Author: fred@example.com</address> </footer> </section>
hr
elementHTMLElement
.The hr
element represents a
paragraph-level thematic break, e.g. a scene change in
a story, or a transition to another topic within a section of a
reference book.
br
elementHTMLElement
.The br
element represents a line
break.
br
elements must be empty. Any content inside
br
elements must not be considered part of the
surrounding text.
br
elements must be used only for line breaks that
are actually part of the content, as in poems or addresses.
The following example is correct usage of the br
element:
<p>P. Sherman<br> 42 Wallaby Way<br> Sydney</p>
br
elements must not be used for separating thematic
groups in a paragraph.
The following examples are non-conforming, as they abuse the
br
element:
<p><a ...>34 comments.</a><br> <a ...>Add a comment.<a></p>
<p>Name: <input name="name"><br> Address: <input name="address"></p>
Here are alternatives to the above, which are correct:
<p><a ...>34 comments.</a></p> <p><a ...>Add a comment.<a></p>
<p>Name: <input name="name"></p> <p>Address: <input name="address"></p>
If a paragraph consists of nothing but a single
br
element, it represents a placeholder blank line
(e.g. as in a template). Such blank lines must not be used for
presentation purposes.
pre
elementHTMLElement
.The pre
element represents a block of
preformatted text, in which structure is represented by typographic
conventions rather than by elements.
In the HTML
serialization, a leading newline character
immediately following the pre
element start tag is
stripped.
Some examples of cases where the pre
element could
be used:
To represent a block of computer code, the pre
element can be used with a code
element; to represent a
block of computer output the pre
element can be used
with a samp
element. Similarly, the kbd
element can be used within a pre
element to indicate
text that the user is to enter.
In the following snippet, a sample of computer code is presented.
<p>This is the <code>Panel</code> constructor:</p> <pre><code>function Panel(element, canClose, closeHandler) { this.element = element; this.canClose = canClose; this.closeHandler = function () { if (closeHandler) closeHandler() }; }</code></pre>
In the following snippet, samp
and kbd
elements are mixed in the contents of a pre
element to
show a session of Zork I.
<pre><samp>You are in an open field west of a big white house with a boarded front door. There is a small mailbox here. ></samp> <kbd>open mailbox</kbd> <samp>Opening the mailbox reveals: A leaflet. ></samp></pre>
The following shows a contemporary poem that uses the
pre
element to preserve its unusual formatting, which
forms an intrinsic part of the poem itself.
<pre> maxling it is with a heart heavy that i admit loss of a feline so loved a friend lost to the unknown (night) ~cdr 11dec07</pre>
dialog
elementdt
element followed by
one dd
element.HTMLElement
.The dialog
element represents a
conversation, meeting minutes, a chat transcript, a dialog in a
screenplay, an instant message log, or some other construct in which
different players take turns in discourse.
Each part of the conversation must have an explicit talker (or
speaker) given by a dt
element, and a discourse (or
quote) given by a dd
element.
This example demonstrates this using an extract from Abbot and Costello's famous sketch, Who's on first:
<dialog> <dt> Costello <dd> Look, you gotta first baseman? <dt> Abbott <dd> Certainly. <dt> Costello <dd> Who's playing first? <dt> Abbott <dd> That's right. <dt> Costello <dd> When you pay off the first baseman every month, who gets the money? <dt> Abbott <dd> Every dollar of it. </dialog>
Text in a dt
element in a
dialog
element is implicitly the source of the text
given in the following dd
element, and the contents of
the dd
element are implicitly a quote from that
speaker. There is thus no need to include cite
,
q
, or blockquote
elements in this
markup. Indeed, a q
element inside a dd
element in a conversation would actually imply the people talking
were themselves quoting another work. See the cite
,
q
, and blockquote
elements for other ways
to cite or quote.
blockquote
elementcite
interface HTMLQuoteElement : HTMLElement { attribute DOMString cite; };
The HTMLQuoteElement
interface is
also used by the q
element.
The blockquote
element represents a
section that is quoted from another source.
Content inside a blockquote
must be quoted from
another source, whose address, if it has one, should be cited in the
cite
attribute.
If the cite
attribute
is present, it must be a valid URL. To obtain the corresponding citation link, the value of
the attribute must be resolved
relative to the element. User agents should allow users to follow
such citation links.
The cite
DOM
attribute must reflect the element's cite
content attribute.
The best way to represent a conversation is not with
the cite
and blockquote
elements, but with
the dialog
element.
This next example shows the use of cite
alongside
blockquote
:
<p>His next piece was the aptly named <cite>Sonnet 130</cite>:</p> <blockquote cite="http://quotes.example.org/s/sonnet130.html"> <p>My mistress' eyes are nothing like the sun,<br> Coral is far more red, than her lips red,<br> ...
ol
elementli
elements.reversed
start
interface HTMLOListElement : HTMLElement { attribute boolean reversed; attribute long start; };
The ol
element represents a list of
items, where the items have been intentionally ordered, such that
changing the order would change the meaning of the document.
The items of the list are the li
element child nodes
of the ol
element, in tree order.
The reversed
attribute is a boolean attribute. If present, it
indicates that the list is a descending list (..., 3, 2, 1). If the
attribute is omitted, the list is an ascending list (1, 2, 3,
...).
The start
attribute, if present, must be a valid integer giving
the ordinal value of the first list item.
If the start
attribute is
present, user agents must parse it as an integer, in order to determine the
attribute's value. The default value, used if the attribute is
missing or if the value cannot be converted to a number according to
the referenced algorithm, is 1 if the element has no reversed
attribute, and is the
number of child li
elements otherwise.
The first item in the list has the ordinal value given by the
ol
element's start
attribute, unless that li
element has a value
attribute with a value that can
be successfully parsed, in which case it has the ordinal value given
by that value
attribute.
Each subsequent item in the list has the ordinal value given by
its value
attribute, if it has
one, or, if it doesn't, the ordinal value of the previous item, plus
one if the reversed
is absent,
or minus one if it is present.
The reversed
DOM
attribute must reflect the value of the reversed
content attribute.
The start
DOM
attribute must reflect the value of the start
content attribute.
The following markup shows a list where the order matters, and
where the ol
element is therefore appropriate. Compare
this list to the equivalent list in the ul
section to
see an example of the same items using the ul
element.
<p>I have lived in the following countries (given in the order of when I first lived there):</p> <ol> <li>Switzerland <li>United Kingdom <li>United States <li>Norway </ol>
Note how changing the order of the list changes the meaning of the document. In the following example, changing the relative order of the first two items has changed the birthplace of the author:
<p>I have lived in the following countries (given in the order of when I first lived there):</p> <ol> <li>United Kingdom <li>Switzerland <li>United States <li>Norway </ol>
ul
elementli
elements.HTMLElement
.The ul
element represents a list of
items, where the order of the items is not important — that
is, where changing the order would not materially change the meaning
of the document.
The items of the list are the li
element child nodes
of the ul
element.
The following markup shows a list where the order does not
matter, and where the ul
element is therefore
appropriate. Compare this list to the equivalent list in the
ol
section to see an example of the same items using
the ol
element.
<p>I have lived in the following countries:</p> <ul> <li>Norway <li>Switzerland <li>United Kingdom <li>United States </ul>
Note that changing the order of the list does not change the meaning of the document. The items in the snippet above are given in alphabetical order, but in the snippet below they are given in order of the size of their current account balance in 2007, without changing the meaning of the document whatsoever:
<p>I have lived in the following countries:</p> <ul> <li>Switzerland <li>Norway <li>United Kingdom <li>United States </ul>
li
elementol
elements.ul
elements.menu
elements.ol
element: value
interface HTMLLIElement : HTMLElement { attribute long value; };
The li
element represents a list
item. If its parent element is an ol
, ul
,
or menu
element, then the element is an item of the
parent element's list, as defined for those elements. Otherwise, the
list item has no defined list-related relationship to any other
li
element.
The value
attribute, if present, must be a valid integer giving
the ordinal value of the list item.
If the value
attribute is
present, user agents must parse it as an integer, in order to determine the
attribute's value. If the attribute's value cannot be converted to a
number, the attribute must be treated as if it was absent. The
attribute has no default value.
The value
attribute is
processed relative to the element's parent ol
element
(q.v.), if there is one. If there is not, the attribute has no
effect.
The value
DOM
attribute must reflect the value of the value
content attribute.
The following example, the top ten movies are listed (in reverse
order). Note the way the list is given a title by using a
figure
element and its legend
.
<figure> <legend>The top 10 movies of all time</legend> <ol> <li value="10"><cite>Josie and the Pussycats</cite>, 2001</li> <li value="9"><cite lang="sh">Црна мачка, бели мачор</cite>, 1998</li> <li value="8"><cite>A Bug's Life</cite>, 1998</li> <li value="7"><cite>Toy Story</cite>, 1995</li> <li value="6"><cite>Monsters, Inc</cite>, 2001</li> <li value="5"><cite>Cars</cite>, 2006</li> <li value="4"><cite>Toy Story 2</cite>, 1999</li> <li value="3"><cite>Finding Nemo</cite>, 2003</li> <li value="2"><cite>The Incredibles</cite>, 2004</li> <li value="1"><cite>Ratatouille</cite>, 2007</li> </ol> </figure>
The markup could also be written as follows, using the reversed
attribute on the
ol
element:
<figure> <legend>The top 10 movies of all time</legend> <ol reversed> <li><cite>Josie and the Pussycats</cite>, 2001</li> <li><cite lang="sh">Црна мачка, бели мачор</cite>, 1998</li> <li><cite>A Bug's Life</cite>, 1998</li> <li><cite>Toy Story</cite>, 1995</li> <li><cite>Monsters, Inc</cite>, 2001</li> <li><cite>Cars</cite>, 2006</li> <li><cite>Toy Story 2</cite>, 1999</li> <li><cite>Finding Nemo</cite>, 2003</li> <li><cite>The Incredibles</cite>, 2004</li> <li><cite>Ratatouille</cite>, 2007</li> </ol> </figure>
If the li
element is the child of a
menu
element and itself has a child that defines a
command, then the
li
element will match the :enabled
and :disabled
pseudo-classes in the
same way as the first such child element does.
dl
elementdt
elements followed by one or more dd
elements.HTMLElement
.The dl
element represents an
association list consisting of zero or more name-value groups (a
description list). Each group must consist of one or more names
(dt
elements) followed by one or more values
(dd
elements).
Name-value groups may be terms and definitions, metadata topics and values, or any other groups of name-value data.
The values within a group are alternatives; multiple paragraphs
forming part of the same value must all be given within the same
dd
element.
The order of the list of groups, and of the names and values within each group, may be significant.
If a dl
element is empty, it contains no groups.
If a dl
element contains non-whitespace text nodes, or elements other than dt
and
dd
, then those elements or text
nodes do not form part of any groups in that
dl
.
If a dl
element contains only dt
elements, then it consists of one group with names but no
values.
If a dl
element contains only dd
elements, then it consists of one group with values but no
names.
If a dl
element starts with one or more
dd
elements, then the first group has no associated
name.
If a dl
element ends with one or more
dt
elements, then the last group has no associated
value.
When a dl
element doesn't match its
content model, it is often due to accidentally using dd
elements in the place of dt
elements and vice
versa. Conformance checkers can spot such mistakes and might be able
to advise authors how to correctly use the markup.
In the following example, one entry ("Authors") is linked to two values ("John" and "Luke").
<dl> <dt> Authors <dd> John <dd> Luke <dt> Editor <dd> Frank </dl>
In the following example, one definition is linked to two terms.
<dl> <dt lang="en-US"> <dfn>color</dfn> </dt> <dt lang="en-GB"> <dfn>colour</dfn> </dt> <dd> A sensation which (in humans) derives from the ability of the fine structure of the eye to distinguish three differently filtered analyses of a view. </dd> </dl>
The following example illustrates the use of the dl
element to mark up metadata of sorts. At the end of the example,
one group has two metadata labels ("Authors" and "Editors") and two
values ("Robert Rothman" and "Daniel Jackson").
<dl> <dt> Last modified time </dt> <dd> 2004-12-23T23:33Z </dd> <dt> Recommended update interval </dt> <dd> 60s </dd> <dt> Authors </dt> <dt> Editors </dt> <dd> Robert Rothman </dd> <dd> Daniel Jackson </dd> </dl>
The following example shows the dl
element used to
give a set of instructions. The order of the instructions here is
important (in the other examples, the order of the blocks was not
important).
<p>Determine the victory points as follows (use the first matching case):</p> <dl> <dt> If you have exactly five gold coins </dt> <dd> You get five victory points </dd> <dt> If you have one or more gold coins, and you have one or more silver coins </dt> <dd> You get two victory points </dd> <dt> If you have one or more silver coins </dt> <dd> You get one victory point </dd> <dt> Otherwise </dt> <dd> You get no victory points </dd> </dl>
The following snippet shows a dl
element being used
as a glossary. Note the use of dfn
to indicate the
word being defined.
<dl> <dt><dfn>Apartment</dfn>, n.</dt> <dd>An execution context grouping one or more threads with one or more COM objects.</dd> <dt><dfn>Flat</dfn>, n.</dt> <dd>A deflated tire.</dd> <dt><dfn>Home</dfn>, n.</dt> <dd>The user's login directory.</dd> </dl>
The dl
element is inappropriate for
marking up dialogue. For an example of how to mark up dialogue, see
the dialog
element.
dt
elementdd
or dt
elements inside dl
elements.dd
element inside a dialog
element.HTMLElement
.The dt
element represents the term, or
name, part of a term-description group in a description list
(dl
element), and the talker, or speaker, part of a
talker-discourse pair in a conversation (dialog
element).
The dt
element itself, when used in a
dl
element, does not indicate that its contents are a
term being defined, but this can be indicated using the
dfn
element.
If the dt
element is the child of a
dialog
element, and it further contains a
time
element, then that time
element
represents a timestamp for when the associated discourse
(dd
element) was said, and is not part of the name of
the talker.
The following extract shows how an IM conversation log could be marked up.
<dialog> <dt> <time>14:22</time> egof <dd> I'm not that nerdy, I've only seen 30% of the star trek episodes <dt> <time>14:23</time> kaj <dd> if you know what percentage of the star trek episodes you have seen, you are inarguably nerdy <dt> <time>14:23</time> egof <dd> it's unarguably <dt> <time>14:24</time> kaj <dd> you are not helping your case </dialog>
dd
elementdt
or dd
elements inside dl
elements.dt
element inside a dialog
element.HTMLElement
.The dd
element represents the
description, definition, or value, part of a term-description group
in a description list (dl
element), and the discourse,
or quote, part in a conversation (dialog
element).
A dl
can be used to define a vocabulary list, like
in a dictionary. In the following example, each entry, given by a
dt
with a dfn
, has several
dd
s, showing the various parts of the definition.
<dl> <dt><dfn>happiness</dfn></dt> <dd class="pronunciation">/'hæ p. nes/</dd> <dd class="part-of-speech"><i><abbr>n.</abbr></i></dd> <dd>The state of being happy.</dd> <dd>Good fortune; success. <q>Oh <b>happiness</b>! It worked!</q></dd> <dt><dfn>rejoice</dfn></dt> <dd class="pronunciation">/ri jois'/</dd> <dd><i class="part-of-speech"><abbr>v.intr.</abbr></i> To be delighted oneself.</dd> <dd><i class="part-of-speech"><abbr>v.tr.</abbr></i> To cause one to be delighted.</dd> </dl>
This specification does not define any markup
specifically for marking up lists of keywords that apply to a group
of pages (also known as tag clouds). In general, authors are
encouraged to either mark up such lists using ul
elements with explicit inline counts that are then hidden and turned
into a presentational effect using a style sheet, or to use SVG.
Here, three tags are included in a short tag cloud:
<style> @media screen, print, handheld, tv { /* should be ignored by non-visual browsers */ .tag-cloud > li > span { display: none; } .tag-cloud > li { display: inline; } .tag-cloud-1 { font-size: 0.7em; } .tag-cloud-2 { font-size: 0.9em; } .tag-cloud-3 { font-size: 1.1em; } .tag-cloud-4 { font-size: 1.3em; } .tag-cloud-5 { font-size: 1.5em; } } </style> ... <ul class="tag-cloud"> <li class="tag-cloud-4"><a title="28 instances" href="/t/apple">apple</a> <span>(popular)</span> <li class="tag-cloud-2"><a title="6 instances" href="/t/kiwi">kiwi</a> <span>(rare)</span> <li class="tag-cloud-5"><a title="41 instances" href="/t/pear">pear</a> <span>(very popular)</span> </ul>
The actual frequency of each tag is given using the title
attribute. A CSS style sheet is
provided to convert the markup into a cloud of differently-sized
words, but for user agents that do not support CSS or are not
visual, the markup contains annotations like "(popular)" or
"(rare)" to categorize the various tags by frequency, thus enabling
all users to benefit from the information.
The ul
element is used (rather than
ol
) because the order is not particular important:
while the list is in fact ordered alphabetically, it would convey
the same information if ordered by, say, the length of the tag.
The tag
rel
-keyword is not used
on these a
elements because they do not represent tags
that apply to the page itself; they are just part of an index
listing the tags themselves.
a
elementhref
target
ping
rel
media
hreflang
type
[Stringifies=href] interface HTMLAnchorElement : HTMLElement { attribute DOMString href; attribute DOMString target; attribute DOMString ping; attribute DOMString rel; readonly attribute DOMTokenList relList; attribute DOMString media; attribute DOMString hreflang; attribute DOMString type; // URL decomposition attributes attribute DOMString protocol; attribute DOMString host; attribute DOMString hostname; attribute DOMString port; attribute DOMString pathname; attribute DOMString search; attribute DOMString hash; };
The Command
interface must also be implemented by
this element.
If the a
element has an href
attribute, then it
represents a hyperlink (a hypertext
anchor).
If the a
element has no href
attribute, then the element
represents a placeholder for where a link might
otherwise have been placed, if it had been relevant.
The target
, ping
, rel
, media
, hreflang
, and type
attributes must be omitted
if the href
attribute is
not present.
If a site uses a consistent navigation tool bar on every page,
then the link that would normally link to the page itself could be
marked up using an a
element:
<nav> <ul> <li> <a href="/">Home</a> </li> <li> <a href="/news">News</a> </li> <li> <a>Examples</a> </li> <li> <a href="/legal">Legal</a> </li> </ul> </nav>
Interactive user agents should allow users to follow hyperlinks created using
the a
element. The href
, target
and ping
attributes decide how the
link is followed. The rel
,
media
, hreflang
, and type
attributes may be used to
indicate to the user the likely nature of the target resource before
the user follows the link.
The activation behavior of a
elements
that represent hyperlinks is to run
the following steps:
If the DOMActivate
event in question is not trusted (i.e. a click()
method call was the reason for the
event being dispatched), and the a
element's target
attribute is ... then raise an
INVALID_ACCESS_ERR
exception and abort these
steps.
If the target of the click
event is an img
element with an ismap
attribute specified, then
server-side image map processing must be performed, as follows:
DOMActivate
event was dispatched as the result of a real
pointing-device-triggered click
event on the img
element, then let x be the distance in CSS pixels from the left edge
of the image's left border, if it has one, or the left edge of
the image otherwise, to the location of the click, and let y be the distance in CSS pixels from the top edge
of the image's top border, if it has one, or the top edge of the
image otherwise, to the location of the click. Otherwise, let
x and y be zero.Finally, the user agent must follow the hyperlink defined by the
a
element. If the steps above defined a hyperlink
suffix, then take that into account when following the
hyperlink.
The DOM attributes href
, ping
, target
, rel
, media
, hreflang
, and type
, must
reflect the respective content attributes of the same
name.
The DOM attribute relList
must
reflect the rel
content attribute.
The a
element also suports the complement of
URL decomposition attributes, protocol
, host
, port
, hostname
, pathname
, search
, and hash
. These must follow the
rules given for URL decomposition attributes, with the input being the result of resolving the element's href
attribute relative to the element,
if there is such an attribute and resolving it is successful, or the
empty string otherwise; and the common setter action being the
same as setting the element's href
attribute to the new output value.
The a
element may be wrapped around entire
paragraphs, lists, tables, and so forth, even entire sections, so
long as there is no interactive content within (e.g. buttons or
other links). This example shows how this can be used to make an
entire advertising block into a link:
<aside class="advertising"> <h1>Advertising</h1> <a href="http://ad.example.com/?adid=1929&pubid=1422"> <section> <h1>Mellblomatic 9000!</h1> <p>Turn all your widgets into mellbloms!</p> <p>Only $9.99 plus shipping and handling.</p> </section> </a> <a href="http://ad.example.com/?adid=375&pubid=1422"> <section> <h1>The Mellblom Browser</h1> <p>Web browsing at the speed of light.</p> <p>No other browser goes faster!</p> </section> </a> </aside>
q
elementcite
q
element uses the HTMLQuoteElement
interface.
The q
element represents some phrasing content quoted from another
source.
Quotation punctuation (such as quotation marks) must not appear
immediately before, after, or inside q
elements; they
will be inserted into the rendering by the user agent.
Content inside a q
element must be quoted from
another source, whose address, if it has one, should be cited in the
cite
attribute. The
source may be fictional, as when quoting characters in a novel or
screenplay.
If the cite
attribute is
present, it must be a valid URL. To obtain the
corresponding citation link, the value of the attribute must be
resolved relative to the
element. User agents should allow users to follow such citation
links.
The q
element must not be used in place of quotation
marks that do not represent quotes; for example, it is inappropriate
to use the q
element for marking up sarcastic
statements.
The use of q
elements to mark up quotations is
entirely optional; using explicit quotation punctuation without
q
elements is just as correct.
Here is a simple example of the use of the q
element:
<p>The man said <q>Things that are impossible just take longer</q>. I disagreed with him.</p>
Here is an example with both an explicit citation link in the
q
element, and an explicit citation outside:
<p>The W3C page <cite>About W3C</cite> says the W3C's mission is <q cite="http://www.w3.org/Consortium/">To lead the World Wide Web to its full potential by developing protocols and guidelines that ensure long-term growth for the Web</q>. I disagree with this mission.</p>
In the following example, the quotation itself contains a quotation:
<p>In <cite>Example One</cite>, he writes <q>The man said <q>Things that are impossible just take longer</q>. I disagreed with him</q>. Well, I disagree even more!</p>
In the following example, quotation marks are used instead of
the q
element:
<p>His best argument was ❝I disagree❞, which I thought was laughable.</p>
In the following example, there is no quote — the
quotation marks are used to name a word. Use of the q
element in this case would be inappropriate.
<p>The word "ineffable" could have been used to describe the disaster resulting from the campaign's mismanagement.</p>
cite
elementHTMLElement
.The cite
element represents the title
of a work (e.g.
a book,
a paper,
an essay,
a poem,
a score,
a song,
a script,
a film,
a TV show,
a game,
a sculpture,
a painting,
a theatre production,
a play,
an opera,
a musical,
an exhibition,
etc). This can be a work that is being quoted or
referenced in detail (i.e. a citation), or it can just be a work
that is mentioned in passing.
A person's name is not the title of a work — even if people
call that person a piece of work — and the element must
therefore not be used to mark up people's names. (In some cases, the
b
element might be appropriate for names; e.g. in a
gossip article where the names of famous people are keywords
rendered with a different style to draw attention to them. In other
cases, if an element is really needed, the
span
element can be used.)
A ship is similarly not a work, and the element must not be used
to mark up ship names (the i
element can be used for
that purpose).
This next example shows a typical use of the cite
element:
<p>My favorite book is <cite>The Reality Dysfunction</cite> by Peter F. Hamilton. My favorite comic is <cite>Pearls Before Swine</cite> by Stephan Pastis. My favorite track is <cite>Jive Samba</cite> by the Cannonball Adderley Sextet.</p>
This is correct usage:
<p>According to the Wikipedia article <cite>HTML</cite>, as it stood in mid-February 2008, leaving attribute values unquoted is unsafe. This is obviously an over-simplification.</p>
The following, however, is incorrect usage, as the
cite
element here is containing far more than the
title of the work:
<!-- do not copy this example, it is an example of bad usage! --> <p>According to <cite>the Wikipedia article on HTML</cite>, as it stood in mid-February 2008, leaving attribute values unquoted is unsafe. This is obviously an over-simplification.</p>
The cite
element is obviously a key part of any
citation in a bibliography, but it is only used to mark the
title:
<p><cite>Universal Declaration of Human Rights</cite>, United Nations, December 1948. Adopted by General Assembly resolution 217 A (III).</p>
A citation is not a quote (for
which the q
element is appropriate).
This is incorrect usage, because cite
is not for
quotes:
<p><cite>This is wrong!</cite>, said Ian.</p>
This is also incorrect usage, because a person is not a work:
<p><q>This is still wrong!</q>, said <cite>Ian</cite>.</p>
The correct usage does not use a cite
element:
<p><q>This is correct</q>, said Ian.</p>
As mentioned above, the b
element might be relevant
for marking names as being keywords in certain kinds of
documents:
<p>And then <b>Ian</b> said <q>this might be right, in a gossip column, maybe!</q>.</p>
em
elementHTMLElement
.The em
element represents stress
emphasis of its contents.
The level of emphasis that a particular piece of content has is
given by its number of ancestor em
elements.
The placement of emphasis changes the meaning of the sentence. The element thus forms an integral part of the content. The precise way in which emphasis is used in this way depends on the language.
These examples show how changing the emphasis changes the meaning. First, a general statement of fact, with no emphasis:
<p>Cats are cute animals.</p>
By emphasizing the first word, the statement implies that the kind of animal under discussion is in question (maybe someone is asserting that dogs are cute):
<p><em>Cats</em> are cute animals.</p>
Moving the emphasis to the verb, one highlights that the truth of the entire sentence is in question (maybe someone is saying cats are not cute):
<p>Cats <em>are</em> cute animals.</p>
By moving it to the adjective, the exact nature of the cats is reasserted (maybe someone suggested cats were mean animals):
<p>Cats are <em>cute</em> animals.</p>
Similarly, if someone asserted that cats were vegetables, someone correcting this might emphasize the last word:
<p>Cats are cute <em>animals</em>.</p>
By emphasizing the entire sentence, it becomes clear that the speaker is fighting hard to get the point across. This kind of emphasis also typically affects the punctuation, hence the exclamation mark here.
<p><em>Cats are cute animals!</em></p>
Anger mixed with emphasizing the cuteness could lead to markup such as:
<p><em>Cats are <em>cute</em> animals!</em></p>
strong
elementHTMLElement
.The strong
element represents strong
importance for its contents.
The relative level of importance of a piece of content is given
by its number of ancestor strong
elements; each
strong
element increases the importance of its
contents.
Changing the importance of a piece of text with the
strong
element does not change the meaning of the
sentence.
Here is an example of a warning notice in a game, with the various parts marked up according to how important they are:
<p><strong>Warning.</strong> This dungeon is dangerous. <strong>Avoid the ducks.</strong> Take any gold you find. <strong><strong>Do not take any of the diamonds</strong>, they are explosive and <strong>will destroy anything within ten meters.</strong></strong> You have been warned.</p>
small
elementHTMLElement
.The small
element represents small
print or other side comments.
Small print is typically legalese describing disclaimers, caveats, legal restrictions, or copyrights. Small print is also sometimes used for attribution.
The small
element does not
"de-emphasize" or lower the importance of text emphasized by the
em
element or marked as important with the
strong
element.
In this example the footer contains contact information and a copyright.
<footer> <address> For more details, contact <a href="mailto:js@example.com">John Smith</a>. </address> <p><small>© copyright 2038 Example Corp.</small></p> </footer>
In this second example, the small
element is used
for a side comment in an article.
<p>Example Corp today announced record profits for the second quarter <small>(Full Disclosure: Foo News is a subsidiary of Example Corp)</small>, leading to speculation about a third quarter merger with Demo Group.</p>
This is distinct from a sidebar, which might be multiple paragraphs long and is removed from the main flow of text. In the following example, we see a sidebar from the same article. This sidebar also has small print, indicating the source of the information in the sidebar.
<aside> <h1>Example Corp</h1> <p>This company mostly creates small software and Web sites.</p> <p>The Example Corp company mission is "To provide entertainment and news on a sample basis".</p> <p><small>Information obtained from <a href="http://example.com/about.html">example.com</a> home page.</small></p> </aside>
In this last example, the small
element is marked
as being important small print.
<p><strong><small>Continued use of this service will result in a kiss.</small></strong></p>
mark
elementHTMLElement
.The mark
element represents a run of
text in one document marked or highlighted for reference purposes,
due to its relevance in another context. When used in a quotation or
other block of text referred to from the prose, it indicates a
highlight that was not originally present but which has been added
to bring the reader's attention to a part of the text that might not
have been considered important by the original author when the block
was originally written, but which is now under previously unexpected
scrutiny. When used in the main prose of a document, it indicates a
part of the document that has been highlighted due to its likely
relevance to the user's current activity.
This example shows how the mark
element can be used
to bring attention to a particular part of a quotation:
<p lang="en-US">Consider the following quote:</p> <blockquote lang="en-GB"> <p>Look around and you will find, no-one's really <mark>colour</mark> blind.</p> </blockquote> <p lang="en-US">As we can tell from the <em>spelling</em> of the word, the person writing this quote is clearly not American.</p>
Another example of the mark
element is highlighting
parts of a document that are matching some search string. If
someone looked at a document, and the server knew that the user was
searching for the word "kitten", then the server might return the
document with one paragraph modified as follows:
<p>I also have some <mark>kitten</mark>s who are visiting me these days. They're really cute. I think they like my garden! Maybe I should adopt a <mark>kitten</mark>.</p>
In the following snippet, a paragraph of text refers to a specific part of a code fragment.
<p>The highlighted part below is where the error lies:</p> <pre><code>var i: Integer; begin i := <mark>1.1</mark>; end.</code></pre>
This is another example showing the use of mark
to
highlight a part of quoted text that was originally not
emphasized. In this example, common typographic conventions have
led the author to explicitly style mark
elements in
quotes to render in italics.
<article> <style> blockquote mark, q mark { font: inherit; font-style: italic; text-decoration: none; background: transparent; color: inherit; } .bubble em { font: inherit; font-size: larger; text-decoration: underline; } </style> <h1>She knew</h1> <p>Did you notice the subtle joke in the joke on panel 4?</p> <blockquote> <p class="bubble">I didn't <em>want</em> to believe. <mark>Of course on some level I realized it was a known-plaintext attack.</mark> But I couldn't admit it until I saw for myself.</p> </blockquote> <p>(Emphasis mine.) I thought that was great. It's so pedantic, yet it explains everything neatly.</p> </article>
Note, incidentally, the distinction between the em
element in this example, which is part of the original text being
quoted, and the mark
element, which is highlighting a
part for comment.
The following example shows the difference between denoting the
importance of a span of text (strong
) as
opposed to denoting the relevance of a span of text
(mark
). It is an extract from a textbook, where the
extract has had the parts relevant to the exam highlighted. The
safety warnings, important though they may be, are apparently not
relevant to the exam.
<h3>Wormhole Physics Introduction</h3> <p><mark>A wormhole in normal conditions can be held open for a maximum of just under 39 minutes.</mark> Conditions that can increase the time include a powerful energy source coupled to one or both of the gates connecting the wormhole, and a large gravity well (such as a black hole).</p> <p><mark>Momentum is preserved across the wormhole. Electromagnetic radiation can travel in both directions through a wormhole, but matter cannot.</mark></p> <p>When a wormhole is created, a vortex normally forms. <strong>Warning: The vortex caused by the wormhole opening will annihilate anything in its path.</strong> Vortexes can be avoided when using sufficiently advanced dialing technology.</p> <p><mark>An obstruction in a gate will prevent it from accepting a wormhole connection.</mark></p>
dfn
elementdfn
elements.title
attribute has special semantics on this element.HTMLElement
.The dfn
element represents the defining
instance of a term. The paragraph,
description list group, or section that is the nearest
ancestor of the dfn
element must also contain the
definition(s) for the term given
by the dfn
element.
Defining term: If the dfn
element has a
title
attribute, then
the exact value of that attribute is the term being defined.
Otherwise, if it contains exactly one element child node and no
child text nodes, and that child
element is an abbr
element with a title
attribute, then the exact value
of that attribute is the term being defined. Otherwise, it
is the exact textContent
of the dfn
element that gives the term being defined.
If the title
attribute of the
dfn
element is present, then it must contain only the
term being defined.
The title
attribute
of ancestor elements does not affect dfn
elements.
An a
element that links to a dfn
element represents an instance of the term defined by the
dfn
element.
In the following fragment, the term "GDO" is first defined in the first paragraph, then used in the second.
<p>The <dfn><abbr title="Garage Door Opener">GDO</abbr></dfn> is a device that allows off-world teams to open the iris.</p> <!-- ... later in the document: --> <p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr> and so Hammond ordered the iris to be opened.</p>
With the addition of an a
element, the reference
can be made explicit:
<p>The <dfn id=gdo><abbr title="Garage Door Opener">GDO</abbr></dfn> is a device that allows off-world teams to open the iris.</p> <!-- ... later in the document: --> <p>Teal'c activated his <a href=#gdo><abbr title="Garage Door Opener">GDO</abbr></a> and so Hammond ordered the iris to be opened.</p>
abbr
elementtitle
attribute has special semantics on this element.HTMLElement
.The abbr
element represents an
abbreviation or acronym, optionally with its expansion. The title
attribute may be
used to provide an expansion of the abbreviation. The attribute, if
specified, must contain an expansion of the abbreviation, and
nothing else.
The paragraph below contains an abbreviation marked up with the
abbr
element. This paragraph defines the term "Web Hypertext Application Technology
Working Group".
<p>The <dfn id=whatwg><abbr title="Web Hypertext Application Technology Working Group">WHATWG</abbr></dfn> is a loose unofficial collaboration of Web browser manufacturers and interested parties who wish to develop new technologies designed to allow authors to write and deploy Applications over the World Wide Web.</p>
An alternative way to write this would be:
<p>The <dfn id=whatwg>Web Hypertext Application Technology Working Group</dfn> (<abbr title="Web Hypertext Application Technology Working Group">WHATWG</abbr>) is a loose unofficial collaboration of Web browser manufacturers and interested parties who wish to develop new technologies designed to allow authors to write and deploy Applications over the World Wide Web.</p>
This paragraph has two abbreviations. Notice how only one is
defined; the other, with no expansion associated with it, does not
use the abbr
element.
<p>The <abbr title="Web Hypertext Application Technology Working Group">WHATWG</abbr> started working on HTML5 in 2004.</p>
This paragraph links an abbreviation to its definition.
<p>The <a href="#whatwg"><abbr title="Web Hypertext Application Technology Working Group">WHATWG</abbr></a> community does not have much representation from Asia.</p>
This paragraph marks up an abbreviation without giving an expansion, possibly as a hook to apply styles for abbreviations (e.g. smallcaps).
<p>Philip` and Dashiva both denied that they were going to get the issue counts from past revisions of the specification to backfill the <abbr>WHATWG</abbr> issue graph.</p>
If an abbreviation is pluralized, the expansion's grammatical number (plural vs singular) must match the grammatical number of the contents of the element.
Here the plural is outside the element, so the expansion is in the singular:
<p>Two <abbr title="Working Group">WG</abbr>s worked on this specification: the <abbr>WHATWG</abbr> and the <abbr>HTMLWG</abbr>.</p>
Here the plural is inside the element, so the expansion is in the plural:
<p>Two <abbr title="Working Groups">WGs</abbr> worked on this specification: the <abbr>WHATWG</abbr> and the <abbr>HTMLWG</abbr>.</p>
Abbreviations do not have to be marked up using this element. It is expected to be useful in the following cases:
abbr
element with a title
attribute is an alternative to
including the expansion inline (e.g. in parentheses).abbr
element with a title
attribute or include the expansion
inline in the text the first time the abbreviation is used.abbr
element
can be used without a title
attribute.Providing an expansion in a title
attribute once will not necessarily
cause other abbr
elements in the same document with the
same contents but without a title
attribute to behave as if they had the same expansion. Every
abbr
element is independent.
time
elementdatetime
interface HTMLTimeElement : HTMLElement { attribute DOMString dateTime; readonly attribute Date date; readonly attribute Date time; readonly attribute Date timezone; };
The time
element represents a precise
date and/or a time in the proleptic Gregorian calendar. [GREGORIAN]
This element is intended as a way to encode modern dates and times in a machine-readable way so that user agents can offer to add them to the user's calendar. For example, adding birthday reminders or scheduling events.
The time
element is not intended for encoding times
for which a precise date or time cannot be established. For
example, it would be inappropriate for encoding times like "one
millisecond after the big bang", "the early part of the Jurassic
period", or "a winter around 250 BCE".
For dates before the introduction of the Gregorian calendar,
authors are encouraged to not use the time
element, or
else to be very careful about converting dates and times from the
period to the Gregorian calendar. This is complicated by the way
the Gregorian calendar was phased in at different times in
different countries, ranging from part way through the 16th century
all the way to early in the 20th.
The datetime
attribute, if present, must contain a valid date or time
string that identifies the date or time being specified.
If the datetime
attribute
is not present, then the date or time must be specified in the
content of the element, such that the element's
textContent
is a valid date or time string in
content, and the date, if any, must be expressed using the
Gregorian calendar.
If the datetime
attribute
is present, then the element may be empty, in which case the user
agent should convey the attribute's value to the user when rendering
the element.
The time
element can be used to encode dates, for
example in Microformats. The following shows a hypothetical way of
encoding an event using a variant on hCalendar that uses the
time
element:
<div class="vevent"> <a class="url" href="http://www.web2con.com/">http://www.web2con.com/</a> <span class="summary">Web 2.0 Conference</span>: <time class="dtstart" datetime="2007-10-05">October 5</time> - <time class="dtend" datetime="2007-10-20">19</time>, at the <span class="location">Argent Hotel, San Francisco, CA</span> </div>
The time
element is not necessary for encoding
dates or times. In the following snippet, the time is encoded using
time
, so that it can be restyled (e.g. using XBL2) to
match local conventions, while the year is not marked up at all,
since marking it up would not be particularly useful.
<p>I usually have a snack at <time>16:00</time>.</p> <p>I've liked model trains since at least 1983.</p>
Using a styling technology that supports restyling times, the first paragraph from the above snippet could be rendered as follows:
I usually have a snack at 4pm.
Or it could be rendered as follows:
I usually have a snack at 16h00.
The dateTime
DOM
attribute must reflect the datetime
content attribute.
User agents, to obtain the date, time, and time zone represented by a
time
element, must follow these steps:
datetime
attribute is present, then use the rules to parse a date or
time string with the flag in attribute from the value
of that attribute, and let the result be result.textContent
, and let the result be result.date
Returns a Date
object representing the date
component of the element's value, at midnight in the UTC
time zone.
Returns null if there is no date.
time
Returns a Date
object representing the time
component of the element's value, on 1970-01-01 in the UTC
time zone.
Returns null if there is no time.
timezone
Returns a Date
object representing the time
corresponding to 1970-01-01 00:00 UTC in the time zone given by the
element's value.
Returns null if there is no time zone.
The date
DOM
attribute must return null if the date is unknown, and otherwise must
return the time corresponding to midnight UTC (i.e. the first
second) of the given date.
The time
DOM attribute
must return null if the time is
unknown, and otherwise must return the time corresponding to the
given time of 1970-01-01, with
the time zone UTC.
The timezone
DOM
attribute must return null if the time zone is unknown, and otherwise
must return the time corresponding to 1970-01-01 00:00 UTC in the
given time zone, with the
time zone set to UTC (i.e. the time corresponding to 1970-01-01 at
00:00 UTC plus the offset corresponding to the time zone).
In the following snippet:
<p>Our first date was <time datetime="2006-09-23">a Saturday</time>.</p>
...the time
element's date
attribute would have the value
1,158,969,600,000ms, and the time
and timezone
attributes would
return null.
In the following snippet:
<p>We stopped talking at <time datetime="2006-09-24T05:00-07:00">5am the next morning</time>.</p>
...the time
element's date
attribute would have the value
1,159,056,000,000ms, the time
attribute would have the value 18,000,000ms, and the timezone
attribute would return
−25,200,000ms. To obtain the actual time, the three attributes can
be added together, obtaining 1,159,048,800,000, which is the
specified date and time in UTC.
Finally, in the following snippet:
<p>Many people get up at <time>08:00</time>.</p>
...the time
element's date
attribute would have the value null,
the time
attribute would have the
value 28,800,000ms, and the timezone
attribute would return
null.
progress
elementvalue
max
interface HTMLProgressElement : HTMLElement { attribute float value; attribute float max; readonly attribute float position; };
The progress
element represents the
completion progress of a task. The progress is either indeterminate,
indicating that progress is being made but that it is not clear how
much more work remains to be done before the task is complete
(e.g. because the task is waiting for a remote host to respond), or
the progress is a number in the range zero to a maximum, giving the
fraction of work that has so far been completed.
There are two attributes that determine the current task completion represented by the element.
The value
attribute specifies how much of the task has been completed, and the
max
attribute
specifies how much work the task requires in total. The units are
arbitrary and not specified.
Instead of using the attributes, authors are recommended to include the current value and the maximum value inline as text inside the element.
Here is a snippet of a Web application that shows the progress of some automated task:
<section> <h2>Task Progress</h2> <p>Progress: <progress><span id="p">0</span>%</progress></p> <script> var progressBar = document.getElementById('p'); function updateProgress(newValue) { progressBar.textContent = newValue; } </script> </section>
(The updateProgress()
method in this example would
be called by some other code on the page to update the actual
progress bar as the task progressed.)
Author requirements: The max
and value
attributes, when present,
must have values that are valid floating point numbers. The max
attribute, if present, must
have a value greater than zero. The value
attribute, if present, must
have a value equal to or greater than zero, and less than or equal
to the value of the max
attribute, if present, or 1, otherwise.
The progress
element is the wrong
element to use for something that is just a gauge, as opposed to
task progress. For instance, indicating disk space usage using
progress
would be inappropriate. Instead, the
meter
element is available for such use cases.
User agent requirements: User agents must parse
the max
and value
attributes' values
according to the rules for parsing floating point number
values.
If the value
attribute
is omitted, then user agents must also parse the
textContent
of the progress
element in
question using the steps for finding one or two numbers of a
ratio in a string. These steps will return nothing, one
number, one number with a denominator punctuation character, or two
numbers.
Using the results of this processing, user agents must determine whether the progress bar is an indeterminate progress bar, or whether it is a determinate progress bar, and in the latter case, what its current and maximum values are, all as follows:
max
attribute is
omitted, and the value
is
omitted, and the results of parsing the textContent
was nothing, then the progress bar is an indeterminate progress
bar. Abort these steps.max
attribute is
included, then, if a value could be parsed out of it, then the
maximum value is that value.max
attribute is absent but the value
attribute is present, or,
if the max
attribute is
present but no value could be parsed from it, then the maximum is
1.textContent
contained one number with an associated
denominator punctuation character, then the maximum value is the
value associated with that denominator punctuation
character; otherwise, if the textContent
contained two numbers, the maximum value is the higher of the two
values; otherwise, the maximum value is 1.value
attribute
is present on the element and a value could be parsed out of it,
that value is the current value of the progress bar. Otherwise, if
the attribute is present but no value could be parsed from it, the
current value is zero.value
attribute is absent and the max
attribute is present, then, if
the textContent
was parsed and found to contain just
one number, with no associated denominator punctuation character,
then the current value is that number. Otherwise, if the value
attribute is absent and
the max
attribute is present
then the current value is zero.textContent
of the element.UA requirements for showing the progress bar:
When representing a progress
element to the user, the
UA should indicate whether it is a determinate or indeterminate
progress bar, and in the former case, should indicate the relative
position of the current value relative to the maximum value.
The max
and value
DOM attributes
must reflect the respective content attributes of the
same name. When the relevant content attributes are absent, the DOM
attributes must return zero. The value parsed from the
textContent
never affects the DOM values.
position
For a determinate progress bar (one with known current and maximum values), returns the result of dividing the current value by the maximum value.
For an indeterminate progress bar, returns −1.
If the progress bar is an indeterminate progress bar, then the
position
DOM
attribute must return −1. Otherwise, it must return the result of
dividing the current value by the maximum value.
meter
elementvalue
min
low
high
max
optimum
interface HTMLMeterElement : HTMLElement { attribute float value; attribute float min; attribute float max; attribute float low; attribute float high; attribute float optimum; };
The meter
element represents a scalar
measurement within a known range, or a fractional value; for example
disk usage, the relevance of a query result, or the fraction of a
voting population to have selected a particular candidate.
This is also known as a gauge.
The meter
element should not be used to
indicate progress (as in a progress bar). For that role, HTML
provides a separate progress
element.
The meter
element also does not
represent a scalar value of arbitrary range — for example, it
would be wrong to use this to report a weight, or height, unless
there is a known maximum value.
There are six attributes that determine the semantics of the gauge represented by the element.
The min
attribute
specifies the lower bound of the range, and the max
attribute specifies
the upper bound. The value
attribute
specifies the value to have the gauge indicate as the "measured"
value.
The other three attributes can be used to segment the gauge's
range into "low", "medium", and "high" parts, and to indicate which
part of the gauge is the "optimum" part. The low
attribute specifies
the range that is considered to be the "low" part, and the high
attribute specifies
the range that is considered to be the "high" part. The optimum
attribute
gives the position that is "optimum"; if that is higher than the
"high" value then this indicates that the higher the value, the
better; if it's lower than the "low" mark then it indicates that
lower values are better, and naturally if it is in between then it
indicates that neither high nor low values are good.
Authoring requirements: The recommended way of giving the value is to include it as contents of the element, either as two numbers (the higher number represents the maximum, the other number the current value, and the minimum is assumed to be zero), or as a percentage or similar (using one of the characters such as "%"), or as a fraction. However, it is also possible to use the attributes to specify these values.
One of the following conditions, along with all the requirements that are listed with that condition, must be met:
value
, min
, and max
attributes are all omittedIf specified, the low
,
high
, and optimum
attributes must have
values greater than or equal to zero and less than or equal to the
bigger of the two numbers in the contents of the element.
If both the low
and high
attributes are specified, then
the low
attribute's value must
be less than or equal to the value of the high
attribute.
value
, min
, and max
attributes are all omittedIf specified, the low
,
high
, and optimum
attributes must have
values greater than or equal to zero and less than or equal to the
value associated with the denominator punctuation
character.
If both the low
and high
attributes are specified, then
the low
attribute's value must
be less than or equal to the value of the high
attribute.
value
attribute is
omittedvalue
attribute is
specifiedIf the min
attribute
attribute is specified, then the minimum is
that attribute's value; otherwise, it is 0.
If the max
attribute
attribute is specified, then the maximum is
that attribute's value; otherwise, it is 1.
If there is exactly one number in the contents of the element,
then value is that number; otherwise, value is the value of the value
attribute.
The following inequalities must hold, as applicable:
low
≤ maximum (if low
is specified)high
≤ maximum (if high
is specified)optimum
≤ maximum (if optimum
is specified)If both the low
and high
attributes are specified, then
the low
attribute's value must
be less than or equal to the value of the high
attribute.
For the purposes of these requirements, a number is a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), optionally including with a single U+002E FULL STOP character (.), and separated from other numbers by at least one character that isn't any of those; interpreted as a base ten number.
The value
, min
, low
, high
, max
, and optimum
attributes, when present,
must have values that are valid floating point numbers.
If no minimum or maximum is specified, then the range is assumed to be 0..1, and the value thus has to be within that range.
The following examples all represent a measurement of three quarters (of the maximum of whatever is being measured):
<meter>75%</meter> <meter>750‰</meter> <meter>3/4</meter> <meter>6 blocks used (out of 8 total)</meter> <meter>max: 100; current: 75</meter> <meter><object data="graph75.png">0.75</object></meter> <meter min="0" max="100" value="75"></meter>
The following example is incorrect use of the element, because it doesn't give a range (and since the default maximum is 1, both of the gauges would end up looking maxed out):
<p>The grapefruit pie had a radius of <meter>12cm</meter> and a height of <meter>2cm</meter>.</p> <!-- BAD! -->
Instead, one would either not include the meter element, or use the meter element with a defined range to give the dimensions in context compared to other pies:
<p>The grapefruit pie had a radius of 12cm and a height of 2cm.</p> <dl> <dt>Radius: <dd> <meter min=0 max=20 value=12>12cm</meter> <dt>Height: <dd> <meter min=0 max=10 value=2>2cm</meter> </dl>
There is no explicit way to specify units in the
meter
element, but the units may be specified in the
title
attribute in free-form text.
The example above could be extended to mention the units:
<dl> <dt>Radius: <dd> <meter min=0 max=20 value=12 title="centimeters">12cm</meter> <dt>Height: <dd> <meter min=0 max=10 value=2 title="centimeters">2cm</meter> </dl>
User agent requirements: User agents must parse
the min
, max
, value
, low
, high
, and optimum
attributes using the
rules for parsing floating point number values.
If the value
attribute has
been omitted, the user agent must also process the
textContent
of the element according to the steps
for finding one or two numbers of a ratio in a string. These
steps will return nothing, one number, one number with a denominator
punctuation character, or two numbers.
User agents must then use all these numbers to obtain values for six points on the gauge, as follows. (The order in which these are evaluated is important, as some of the values refer to earlier ones.)
If the min
attribute is
specified and a value could be parsed out of it, then the minimum
value is that value. Otherwise, the minimum value is zero.
If the max
attribute is
specified and a value could be parsed out of it, the maximum
value is that value.
Otherwise, if the max
attribute is specified but no value could be parsed out of it, or
if it was not specified, but either or both of the min
or value
attributes were
specified, then the maximum value is 1.
Otherwise, none of the max
,
min
, and value
attributes were
specified. If the result of processing the
textContent
of the element was either nothing or just
one number with no denominator punctuation character, then the
maximum value is 1; if the result was one number but it had an
associated denominator punctuation character, then the maximum
value is the value associated with that denominator
punctuation character; and finally, if there were two
numbers parsed out of the textContent
, then the
maximum is the higher of those two numbers.
If the above machinations result in a maximum value less than the minimum value, then the maximum value is actually the same as the minimum value.
If the value
attribute is
specified and a value could be parsed out of it, then that value
is the actual value.
If the value
attribute is
not specified but the max
attribute is specified and the result of processing the
textContent
of the element was one number with no
associated denominator punctuation character, then that number is
the actual value.
If neither of the value
and max
attributes are
specified, then, if the result of processing the
textContent
of the element was one number (with or
without an associated denominator punctuation character), then
that is the actual value, and if the result of processing the
textContent
of the element was two numbers, then the
actual value is the lower of the two numbers found.
Otherwise, if none of the above apply, the actual value is zero.
If the above procedure results in an actual value less than the minimum value, then the actual value is actually the same as the minimum value.
If, on the other hand, the result is an actual value greater than the maximum value, then the actual value is the maximum value.
If the low
attribute is
specified and a value could be parsed out of it, then the low
boundary is that value. Otherwise, the low boundary is the same as
the minimum value.
If the low boundary is then less than the minimum value, then the low boundary is actually the same as the minimum value. Similarly, if the low boundary is greater than the maximum value, then it is actually the maximum value instead.
If the high
attribute is
specified and a value could be parsed out of it, then the high
boundary is that value. Otherwise, the high boundary is the same
as the maximum value.
If the high boundary is then less than the low boundary, then the high boundary is actually the same as the low boundary. Similarly, if the high boundary is greater than the maximum value, then it is actually the maximum value instead.
If the optimum
attribute is specified and a value could be parsed out of it, then
the optimum point is that value. Otherwise, the optimum point is
the midpoint between the minimum value and the maximum value.
If the optimum point is then less than the minimum value, then the optimum point is actually the same as the minimum value. Similarly, if the optimum point is greater than the maximum value, then it is actually the maximum value instead.
All of which will result in the following inequalities all being true:
UA requirements for regions of the gauge: If the optimum point is equal to the low boundary or the high boundary, or anywhere in between them, then the region between the low and high boundaries of the gauge must be treated as the optimum region, and the low and high parts, if any, must be treated as suboptimal. Otherwise, if the optimum point is less than the low boundary, then the region between the minimum value and the low boundary must be treated as the optimum region, the region between the low boundary and the high boundary must be treated as a suboptimal region, and the region between the high boundary and the maximum value must be treated as an even less good region. Finally, if the optimum point is higher than the high boundary, then the situation is reversed; the region between the high boundary and the maximum value must be treated as the optimum region, the region between the high boundary and the low boundary must be treated as a suboptimal region, and the remaining region between the low boundary and the minimum value must be treated as an even less good region.
UA requirements for showing the gauge: When
representing a meter
element to the user, the UA should
indicate the relative position of the actual value to the minimum
and maximum values, and the relationship between the actual value
and the three regions of the gauge.
The following markup:
<h3>Suggested groups</h3> <menu type="toolbar"> <a href="?cmd=hsg" onclick="hideSuggestedGroups()">Hide suggested groups</a> </menu> <ul> <li> <p><a href="/group/comp.infosystems.www.authoring.stylesheets/view">comp.infosystems.www.authoring.stylesheets</a> - <a href="/group/comp.infosystems.www.authoring.stylesheets/subscribe">join</a></p> <p>Group description: <strong>Layout/presentation on the WWW.</strong></p> <p><meter value="0.5">Moderate activity,</meter> Usenet, 618 subscribers</p> </li> <li> <p><a href="/group/netscape.public.mozilla.xpinstall/view">netscape.public.mozilla.xpinstall</a> - <a href="/group/netscape.public.mozilla.xpinstall/subscribe">join</a></p> <p>Group description: <strong>Mozilla XPInstall discussion.</strong></p> <p><meter value="0.25">Low activity,</meter> Usenet, 22 subscribers</p> </li> <li> <p><a href="/group/mozilla.dev.general/view">mozilla.dev.general</a> - <a href="/group/mozilla.dev.general/subscribe">join</a></p> <p><meter value="0.25">Low activity,</meter> Usenet, 66 subscribers</p> </li> </ul>
Might be rendered as follows:
User agents may combine the value of the title
attribute and the other attributes
to provide context-sensitive help or inline text detailing the
actual values.
For example, the following snippet:
<meter min=0 max=60 value=23.2 title=seconds></meter>
...might cause the user agent to display a gauge with a tooltip saying "Value: 23.2 out of 60." on one line and "seconds" on a second line.
The min
, max
, value
, low
, high
, and optimum
DOM attributes
must reflect the respective content attributes of the
same name. When the relevant content attributes are absent, the DOM
attributes must return zero. The value parsed from the
textContent
never affects the DOM values.
code
elementHTMLElement
.The code
element represents a fragment
of computer code. This could be an XML element name, a filename, a
computer program, or any other string that a computer would
recognize.
Although there is no formal way to indicate the language of
computer code being marked up, authors who wish to mark
code
elements with the language used, e.g. so that
syntax highlighting scripts can use the right rules, may do so by
adding a class prefixed with "language-
" to
the element.
The following example shows how the element can be used in a paragraph to mark up element names and computer code, including punctuation.
<p>The <code>code</code> element represents a fragment of computer code.</p> <p>When you call the <code>activate()</code> method on the <code>robotSnowman</code> object, the eyes glow.</p> <p>The example below uses the <code>begin</code> keyword to indicate the start of a statement block. It is paired with an <code>end</code> keyword, which is followed by the <code>.</code> punctuation character (full stop) to indicate the end of the program.</p>
The following example shows how a block of code could be marked
up using the pre
and code
elements.
<pre><code class="language-pascal">var i: Integer; begin i := 1; end.</code></pre>
A class is used in that example to indicate the language used.
See the pre
element for more details.
var
elementHTMLElement
.The var
element represents a
variable. This could be an actual variable in a mathematical
expression or programming context, or it could just be a term used
as a placeholder in prose.
In the paragraph below, the letter "n" is being used as a variable in prose:
<p>If there are <var>n</var> pipes leading to the ice cream factory then I expect at <em>least</em> <var>n</var> flavors of ice cream to be available for purchase!</p>
For mathematics, in particular for anything beyond the simplest
of expressions, MathML is more appropriate. However, the
var
element can still be used to refer to specific
variables that are then mentioned in MathML expressions.
In this example, an equation is shown, with a legend that
references the variables in the equation. The expression itself is
marked up with MathML, but the variables are mentioned in the
figure's legend using var
.
<figure> <math> <mi>a</mi> <mo>=</mo> <msqrt> <msup><mi>b</mi><mn>2</mn></msup> <mi>+</mi> <msup><mi>c</mi><mn>2</mn></msup> </msqrt> </math> <legend> Using Pythagoras' theorem to solve for the hypotenuse <var>a</var> of a triangle with sides <var>b</var> and <var>c</var> </legend> </figure>
samp
elementHTMLElement
.The samp
element represents (sample)
output from a program or computing system.
See the pre
and kbd
elements for more details.
This example shows the samp
element being used
inline:
<p>The computer said <samp>Too much cheese in tray two</samp> but I didn't know what that meant.</p>
This second example shows a block of sample output. Nested
samp
and kbd
elements allow for the
styling of specific elements of the sample output using a
style sheet.
<pre><samp><samp class="prompt">jdoe@mowmow:~$</samp> <kbd>ssh demo.example.com</kbd> Last login: Tue Apr 12 09:10:17 2005 from mowmow.example.com on pts/1 Linux demo 2.6.10-grsec+gg3+e+fhs6b+nfs+gr0501+++p3+c4a+gr2b-reslog-v6.189 #1 SMP Tue Feb 1 11:22:36 PST 2005 i686 unknown <samp class="prompt">jdoe@demo:~$</samp> <samp class="cursor">_</samp></samp></pre>
kbd
elementHTMLElement
.The kbd
element represents user input
(typically keyboard input, although it may also be used to represent
other input, such as voice commands).
When the kbd
element is nested inside a
samp
element, it represents the input as it was echoed
by the system.
When the kbd
element contains a
samp
element, it represents input based on system
output, for example invoking a menu item.
When the kbd
element is nested inside another
kbd
element, it represents an actual key or other
single unit of input as appropriate for the input mechanism.
Here the kbd
element is used to indicate keys to press:
<p>To make George eat an apple, press <kbd><kbd>Shift</kbd>+<kbd>F3</kbd></kbd></p>
In this second example, the user is told to pick a particular
menu item. The outer kbd
element marks up a block of
input, with the inner kbd
elements representing each
individual step of the input, and the samp
elements
inside them indicating that the steps are input based on something
being displayed by the system, in this case menu labels:
<p>To make George eat an apple, select <kbd><kbd><samp>File</samp></kbd>|<kbd><samp>Eat Apple...</samp></kbd></kbd> </p>
sub
and sup
elementsHTMLElement
.The sup
element represents a
superscript and the sub
element represents
a subscript.
These elements must be used only to mark up typographical
conventions with specific meanings, not for typographical
presentation for presentation's sake. For example, it would be
inappropriate for the sub
and sup
elements
to be used in the name of the LaTeX document preparation system. In
general, authors should use these elements only if the
absence of those elements would change the meaning of the
content.
When the sub
element is used inside a
var
element, it represents the subscript that
identifies the variable in a family of variables.
<p>The coordinate of the <var>i</var>th point is (<var>x<sub><var>i</var></sub></var>, <var>y<sub><var>i</var></sub></var>). For example, the 10th point has coordinate (<var>x<sub>10</sub></var>, <var>y<sub>10</sub></var>).</p>
In certain languages, superscripts are part of the typographical conventions for some abbreviations.
<p>The most beautiful women are <span lang="fr"><abbr>M<sup>lle</sup></abbr> Gwendoline</span> and <span lang="fr"><abbr>M<sup>me</sup></abbr> Denise</span>.</p>
Mathematical expressions often use subscripts and superscripts.
Authors are encouraged to use MathML for marking up mathematics, but
authors may opt to use sub
and sup
if
detailed mathematical markup is not desired. [MathML]
<var>E</var>=<var>m</var><var>c</var><sup>2</sup>
f(<var>x</var>, <var>n</var>) = log<sub>4</sub><var>x</var><sup><var>n</var></sup>
span
elementHTMLElement
.The span
element doesn't mean anything on its own,
but can be useful when used together with other attributes,
e.g. class
, lang
, or dir
. It represents its
children.
i
elementHTMLElement
.The i
element represents a span of text
in an alternate voice or mood, or otherwise offset from the normal
prose, such as a taxonomic designation, a technical term, an
idiomatic phrase from another language, a thought, a ship name, or
some other prose whose typical typographic presentation is
italicized.
Terms in languages different from the main text should be
annotated with lang
attributes (xml:lang
in XML).
The examples below show uses of the i
element:
<p>The <i class="taxonomy">Felis silvestris catus</i> is cute.</p> <p>The term <i>prose content</i> is defined above.</p> <p>There is a certain <i lang="fr">je ne sais quoi</i> in the air.</p>
In the following example, a dream sequence is marked up using
i
elements.
<p>Raymond tried to sleep.</p> <p><i>The ship sailed away on Thursday</i>, he dreamt. <i>The ship had many people aboard, including a beautiful princess called Carey. He watched her, day-in, day-out, hoping she would notice him, but she never did.</i></p> <p><i>Finally one night he picked up the courage to speak with her—</i></p> <p>Raymond woke with a start as the fire alarm rang out.</p>
Authors are encouraged to use the class
attribute on the i
element to identify why the element is being used, so that if the
style of a particular use (e.g. dream sequences as opposed to
taxonomic terms) is to be changed at a later date, the author
doesn't have to go through the entire document (or series of related
documents) annotating each use. Similarly, authors are encouraged to
consider whether other elements might be more applicable than the
i
element, for instance the em
element for
marking up stress emphasis, or the dfn
element to mark
up the defining instance of a term.
Style sheets can be used to format i
elements, just like any other element can be restyled. Thus, it is
not the case that content in i
elements will
necessarily be italicized.
b
elementHTMLElement
.The b
element represents a span of text
to be stylistically offset from the normal prose without conveying
any extra importance, such as key words in a document abstract,
product names in a review, or other spans of text whose typical
typographic presentation is boldened.
The following example shows a use of the b
element
to highlight key words without marking them up as important:
<p>The <b>frobonitor</b> and <b>barbinator</b> components are fried.</p>
In the following example, objects in a text adventure are
highlighted as being special by use of the b
element.
<p>You enter a small room. Your <b>sword</b> glows brighter. A <b>rat</b> scurries past the corner wall.</p>
Another case where the b
element is appropriate is
in marking up the lede (or lead) sentence or paragraph. The
following example shows how a BBC
article about kittens adopting a rabbit as their own could be
marked up using HTML5 elements:
<article> <h2>Kittens 'adopted' by pet rabbit</h2> <p><b>Six abandoned kittens have found an unexpected new mother figure — a pet rabbit.</b></p> <p>Veterinary nurse Melanie Humble took the three-week-old kittens to her Aberdeen home.</p> [...]
The b
element should be used as a last resort when
no other element is more appropriate. In particular, headings should
use the h1
to h6
elements, stress emphasis
should use the em
element, importance should be denoted
with the strong
element, and text marked or highlighted
should use the mark
element.
The following would be incorrect usage:
<p><b>WARNING!</b> Do not frob the barbinator!</p>
In the previous example, the correct element to use would have
been strong
, not b
.
Style sheets can be used to format b
elements, just like any other element can be restyled. Thus, it is
not the case that content in b
elements will
necessarily be boldened.
bdo
elementdir
global attribute has special semantics on this element.HTMLElement
.The bdo
element represents explicit
text directionality formatting control for its children. It allows
authors to override the Unicode bidi algorithm by explicitly
specifying a direction override. [BIDI]
Authors must specify the dir
attribute on this element, with the value ltr
to
specify a left-to-right override and with the value rtl
to specify a right-to-left override.
If the element has the dir
attribute set to the exact value ltr
, then for the
purposes of the bidi algorithm, the user agent must act as if there
was a U+202D LEFT-TO-RIGHT OVERRIDE character at the start of the
element, and a U+202C POP DIRECTIONAL FORMATTING at the end of the
element.
If the element has the dir
attribute set to the exact value rtl
, then for the
purposes of the bidi algorithm, the user agent must act as if there
was a U+202E RIGHT-TO-LEFT OVERRIDE character at the start of the
element, and a U+202C POP DIRECTIONAL FORMATTING at the end of the
element.
The requirements on handling the bdo
element for the
bidi algorithm may be implemented indirectly through the style
layer. For example, an HTML+CSS user agent should implement these
requirements by implementing the CSS 'unicode-bidi' property. [CSS21]
ruby
elementrt
element, or an rp
element, an rt
element, and another rp
element.HTMLElement
.The ruby
element allows one or more spans of
phrasing content to be marked with ruby annotations. Ruby
annotations are short runs of text presented alongside base text,
primarily used in East Asian typography as a guide for
pronunciation or to include other annotations. In Japanese, this
form of typography is also known as furigana.
A ruby
element represents the spans of
phrasing content it contains, ignoring all the child rt
and rp
elements and their descendants. Those spans of
phrasing content have associated annotations created using the
rt
element.
In this example, each ideograph in the Japanese text 漢字 is annotated with its kanji reading.
...
<ruby>
漢 <rt> かん </rt>
字 <rt> じ </rt>
</ruby>
...
This might be rendered as:
In this example, each ideograph in the traditional Chinese text 漢字 is annotated with its bopomofo reading.
<ruby>
漢 <rt> ㄏㄢˋ </rt>
字 <rt> ㄗˋ </rt>
</ruby>
This might be rendered as:
In this example, each ideograph in the simplified Chinese text 汉字 is annotated with its pinyin reading.
...
<ruby>
汉 <rt> hàn </rt>
字 <rt> zì </rt>
</ruby>
...
This might be rendered as:
rt
elementruby
element.HTMLElement
.The rt
element marks the ruby text component of a
ruby annotation.
An rt
element that is a child of
a ruby
element represents an
annotation (given by its children) for the zero or more nodes of
phrasing content that immediately precedes it in the
ruby
element, ignoring rp
elements.
rp
elementruby
element, either immediately before or immediately after an rt
element.rp
element is immediately after an rt
element that is immediately preceded by another rp
element: a single character from Unicode character class Pe.HTMLElement
.The rp
element can be used to provide parentheses
around a ruby text component of a ruby annotation, to be shown by
user agents that don't support ruby annotations.
An rp
element that is a child of
a ruby
element represents
nothing and its contents must be
ignored. An rp
element whose
parent element is not a ruby
element
represents its children.
The example above, in which each ideograph in the text 漢字 is annotated with its kanji
reading, could be expanded to use rp
so that in legacy
user agents the readings are in parentheses:
...
<ruby>
漢 <rp>(</rp><rt>かん</rt><rp>)</rp>
字 <rp>(</rp><rt>じ</rt><rp>)</rp>
</ruby>
...
In conforming user agents the rendering would be as above, but in user agents that do not support ruby, the rendering would be:
... 漢 (かん) 字 (じ) ...
We need to summarize the various elements, in particular to distinguish b/i/em/strong/var/q/mark/cite.
HTML does not have a dedicated mechanism for marking up footnotes. Here are the recommended alternatives.
For short inline annotations, the title
attribute should be used.
In this example, two parts of a dialog are annotated.
<dialog> <dt>Customer <dd>Hello! I wish to register a complaint. Hello. Miss? <dt>Shopkeeper <dd><span title="Colloquial pronunciation of 'What do you'" >Watcha</span> mean, miss? <dt>Customer <dd>Uh, I'm sorry, I have a cold. I wish to make a complaint. <dt>Shopkeeper <dd>Sorry, <span title="This is, of course, a lie.">we're closing for lunch</span>. </dialog>
For longer annotations, the a
element should be
used, pointing to an element later in the document. The convention
is that the contents of the link be a number in square brackets.
In this example, a footnote in the dialog links to a paragraph below the dialog. The paragraph then reciprocally links back to the dialog, allowing the user to return to the location of the footnote.
<dialog> <dt>Announcer <dd>Number 16: The <i>hand</i>. <dt>Interviewer <dd>Good evening. I have with me in the studio tonight Mr Norman St John Polevaulter, who for the past few years has been contradicting people. Mr Polevaulter, why <em>do</em> you contradict people? <dt>Norman <dd>I don't. <a href="#fn1" id="r1">[1]</a> <dt>Interviewer <dd>You told me you did! </dialog> <section> <p id="fn1"><a href="#r1">[1]</a> This is, naturally, a lie, but paradoxically if it were true he could not say so without contradicting the interviewer and thus making it false.</p> </section>
For side notes, longer annotations that apply to entire sections
of the text rather than just specific words or sentences, the
aside
element should be used.
In this example, a sidebar is given after a dialog, giving some context to the dialog.
<dialog> <dt>Customer <dd>I will not buy this record, it is scratched. <dt>Shopkeeper <dd>I'm sorry? <dt>Customer <dd>I will not buy this record, it is scratched. <dt>Shopkeeper <dd>No no no, this's'a tobacconist's. </dialog> <aside> <p>In 1970, the British Empire lay in ruins, and foreign nationalists frequented the streets — many of them Hungarians (not the streets — the foreign nationals). Sadly, Alexander Yalt has been publishing incompetently-written phrase books. </aside>
The ins
and del
elements represent
edits to the document.
ins
elementcite
datetime
HTMLModElement
interface.The ins
element represents an addition
to the document.
The following represents the addition of a single paragraph:
<aside> <ins> <p> I like fruit. </p> </ins> </aside>
As does this, because everything in the aside
element here counts as phrasing content and therefore
there is just one paragraph:
<aside> <ins> Apples are <em>tasty</em>. </ins> <ins> So are pears. </ins> </aside>
ins
elements should not cross implied paragraph boundaries.
The following example represents the addition of two paragraphs,
the second of which was inserted in two parts. The first
ins
element in this example thus crosses a paragraph
boundary, which is considered poor form.
<aside> <ins datetime="2005-03-16T00:00Z"> <p> I like fruit. </p> Apples are <em>tasty</em>. </ins> <ins datetime="2007-12-19T00:00Z"> So are pears. </ins> </aside>
Here is a better way of marking this up. It uses more elements, but none of the elements cross implied paragraph boundaries.
<aside> <ins datetime="2005-03-16T00:00Z"> <p> I like fruit. </p> </ins> <ins datetime="2005-03-16T00:00Z"> Apples are <em>tasty</em>. </ins> <ins datetime="2007-12-19T00:00Z"> So are pears. </ins> </aside>
del
elementcite
datetime
HTMLModElement
interface.The del
element represents a removal
from the document.
del
elements should not cross implied paragraph boundaries.
ins
and del
elementsThe cite
attribute
may be used to specify the address of a document that explains the
change. When that document is long, for instance the minutes of a
meeting, authors are encouraged to include a fragment identifier
pointing to the specific part of that document that discusses the
change.
If the cite
attribute is
present, it must be a valid URL that explains the
change. To obtain the corresponding citation link, the value of the
attribute must be resolved
relative to the element. User agents should allow users to follow
such citation links.
The datetime
attribute may be used to specify the time and date of the change.
If present, the datetime
attribute must be a valid global date and time string
value.
User agents must parse the datetime
attribute according to the
parse a global date and time string algorithm. If that
doesn't return a time, then the modification has no associated
timestamp (the value is non-conforming; it is not a valid
global date and time string). Otherwise, the modification is
marked as having been made at the given datetime. User agents should
use the associated time-zone information to determine which time zone
to present the given datetime in.
The ins
and del
elements must implement the HTMLModElement
interface:
interface HTMLModElement : HTMLElement { attribute DOMString cite; attribute DOMString dateTime; };
The cite
DOM
attribute must reflect the element's cite
content attribute. The dateTime
DOM attribute
must reflect the element's datetime
content attribute.
Since the ins
and del
elements do not
affect paragraphing, it is possible,
in some cases where paragraphs are implied (without explicit p
elements), for an ins
or del
element to
span both an entire paragraph or other non-phrasing
content elements and part of another paragraph.
For example:
<section> <ins> <p> This is a paragraph that was inserted. </p> This is another paragraph whose first sentence was inserted at the same time as the paragraph above. </ins> This is a second sentence, which was there all along. </section>
By only wrapping some paragraphs in p
elements, one
can even get the end of one paragraph, a whole second paragraph,
and the start of a third paragraph to be covered by the same
ins
or del
element (though this is very
confusing, and not considered good practice):
<section> This is the first paragraph. <ins>This sentence was inserted. <p>This second paragraph was inserted.</p> This sentence was inserted too.</ins> This is the third paragraph in this example. </section>
However, due to the way implied
paragraphs are defined, it is not possible to mark up the
end of one paragraph and the start of the very next one using the
same ins
or del
element. You instead have
to use one (or two) p
element(s) and two
ins
or del
elements:
For example:
<section> <p>This is the first paragraph. <del>This sentence was deleted.</del></p> <p><del>This sentence was deleted too.</del> That sentence needed a separate <del> element.</p> </section>
Partly because of the confusion described above, authors are
strongly recommended to always mark up all paragraphs with the
p
element, and to not have any ins
or
del
elements that cross across any implied paragraphs.
The content models of the ol
and ul
elements do not allow ins
and del
elements
as children. Lists always represent all their items, including items
that would otherwise have been marked as deleted.
To indicate that an item is inserted or deleted, an
ins
or del
element can be wrapped around
the contents of the li
element. To indicate that an
item has been replaced by another, a single li
element
can have one or more del
elements followed by one or
more ins
elements.
In the following example, a list that started empty had items added and removed from it over time. The bits in the example that have been emphasized show the parts that are the "current" state of the list. The list item numbers don't take into account the edits, though.
<h1>Stop-ship bugs</h1> <ol> <li><ins datetime="2008-02-12T15:20Z">Bug 225: Rain detector doesn't work in snow</ins></li> <li><del datetime="2008-03-01T20:22Z"><ins datetime="2008-02-14T12:02Z">Bug 228: Water buffer overflows in April</ins></del></li> <li><ins datetime="2008-02-16T13:50Z">Bug 230: Water heater doesn't use renewable fuels</ins></li> <li><del datetime="2008-02-20T21:15Z"><ins datetime="2008-02-16T14:25Z">Bug 232: Carbon dioxide emissions detected after startup</ins></del></li> </ol>
In the following example, a list that started with just fruit was replaced by a list with just colors.
<h1>List of <del>fruits</del><ins>colors</ins></h1> <ul> <li><del>Lime</del><ins>Green</ins></li> <li><del>Apple</del></li> <li>Orange</li> <li><del>Pear</del></li> <li><ins>Teal</ins></li> <li><del>Lemon</del><ins>Yellow</ins></li> <li>Olive</li> <li><ins>Purple</ins> </ul>
figure
elementlegend
element followed by flow content.legend
element.HTMLElement
.The figure
element represents some
flow content, optionally with a caption, which can be
moved away from the main flow of the document without affecting the
document's meaning.
The element can thus be used to annotate illustrations, diagrams, photos, code listings, etc, that are referred to from the main content of the document, but that could, without affecting the flow of the document, be moved away from that primary content, e.g. to the side of the page, to dedicated pages, or to an appendix.
The first legend
element child of the element, if
any, represents the caption of the figure
element's
contents. If there is no child legend
element, then
there is no caption.
The remainder of the element's contents, if any, represents the content.
This example shows the figure
element to mark up a
code listing.
<p>In <a href="#l4">listing 4</a> we see the primary core interface API declaration.</p> <figure id="l4"> <legend>Listing 4. The primary core interface API declaration.</legend> <pre><code>interface PrimaryCore { boolean verifyDataLine(); void sendData(in sequence<byte> data); void initSelfDestruct(); }</code></pre> </figure> <p>The API is designed to use UTF-8.</p>
Here we see a figure
element to mark up a
photo.
<figure> <img src="bubbles-work.jpeg" alt="Bubbles, sitting in his office chair, works on his latest project intently."> <legend>Bubbles at work</legend> </figure>
In this example, we see an image that is not a figure, as well as an image and a video that are.
<h2>Malinko's comics</h2> <p>This case centered on some sort of "intellectual property" infringement related to a comic (see Exhibit A). The suit started after a trailer ending with these words:</p> <img src="promblem-packed-action.png" alt="ROUGH COPY! Promblem-Packed Action!"> <p>...was aired. A lawyer, armed with a Bigger Notebook, launched a preemptive strike using snowballs. A complete copy of the trailer is included with Exhibit B.</p> <figure> <img src="ex-a.png" alt="Two squiggles on a dirty piece of paper."> <legend>Exhibit A. The alleged <cite>rough copy</cite> comic.</legend> </figure> <figure> <video src="ex-b.mov"></video> <legend>Exhibit B. The <code>Rough Copy</cite> trailer.</legend> </figure> <p>The case was resolved out of court.</p>
Here, a part of a poem is marked up using
figure
.
<figure> <p>'Twas brillig, and the slithy toves<br> Did gyre and gimble in the wabe;<br> All mimsy were the borogoves,<br> And the mome raths outgrabe.</p> <legend><cite>Jabberwocky</cite> (first verse). Lewis Carroll, 1832-98</legend> </figure>
In this example, which could be part of a much larger work discussing a castle, the figure has three images in it.
<figure> <img src="castle1423.jpeg" title="Etching. Anonymous, ca. 1423." alt="The castle has one tower, and a tall wall around it."> <img src="castle1858.jpeg" title="Oil-based paint on canvas. Maria Towle, 1858." alt="The castle now has two towers and two walls."> <img src="castle1999.jpeg" title="Film photograph. Peter Jankle, 1999." alt="The castle lies in ruins, the original tower all that remains in one piece."> <legend>The castle through the ages: 1423, 1858, and 1999 respectively.</legend> </figure>
img
elementusemap
attribute: Interactive content.alt
src
usemap
ismap
width
height
[NamedConstructor=Image(), NamedConstructor=Image(in unsigned long width), NamedConstructor=Image(in unsigned long width, in unsigned long height)] interface HTMLImageElement : HTMLElement { attribute DOMString alt; attribute DOMString src; attribute DOMString useMap; attribute boolean isMap; attribute unsigned long width; attribute unsigned long height; readonly attribute boolean complete; };
An img
element represents an image.
The image given by the src
attribute is the
embedded content, and the value of the alt
attribute is the
img
element's fallback content.
The src
attribute must be
present, and must contain a valid URL referencing a
non-interactive, optionally animated, image resource that is neither
paged nor scripted. If the base URI of the element is the
same as the document's address, then the src
attribute's value must not be the
empty string.
Images can thus be static bitmaps (e.g. PNGs, GIFs, JPEGs), single-page vector documents (single-page PDFs, XML files with an SVG root element), animated bitmaps (APNGs, animated GIFs), animated vector graphics (XML files with an SVG root element that use declarative SMIL animation), and so forth. However, this also precludes SVG files with script, multipage PDF files, interactive MNG files, HTML documents, plain text documents, and so forth.
The requirements on the alt
attribute's value are described in the next
section.
There has been some suggestion that the longdesc
attribute from HTML4 should be
included. This has been considered and rejected in the past, but if
new evidence is found showing the attribute to actually help users
rather than harm them, it may be reconsidered.
The img
must not be used as a layout tool. In
particular, img
elements should not be used to display
transparent images, as they rarely convey meaning and rarely
add anything useful to the document.
Unless the user agent cannot support images, or its support for
images has been disabled, or the user agent only fetches elements on
demand, or the element's src
attribute has a value that is an ignored self-reference,
then, when an img
is created with a src
attribute, and whenever the src
attribute is set subsequently, the
user agent must resolve the value
of that attribute, relative to the element, and if that is
successful must then fetch that resource.
The src
attribute's value is an
ignored self-reference if its value is the empty string, and
the base URI of the element is the same as the
document's address.
Fetching the image must delay the load event of the element's document until the task that is queued by the networking task source once the resource has been fetched (defined below) has been run.
This, unfortunately, can be used to perform a rudimentary port scan of the user's local network (especially in conjunction with scripting, though scripting isn't actually necessary to carry out such an attack). User agents may implement cross-origin access control policies that mitigate this attack.
If the image's type is a supported image type, and the image is a valid image of that type, then the image is said to be available (this affects exactly what the element represents, as defined below). This can be true even before the image is completely downloaded, if the user agent supports incremental rendering of images; in such cases, each task that is queued by the networking task source while the image is being fetched must update the presentation of the image appropriately.
If the image was not fetched (e.g. because the UA's image support
is disabled, or because the src
attribute's value is an ignored self-reference), or if the
conditions in the previous paragraph are not met, then the image is
not available.
An image might be available in one
view but not another. For instance, a
Document
could be rendered by a screen reader providing
a speech synthesis view of the output of a Web browser using the
screen media. In this case, the image would be available in
the Web browser's screen view, but not available in
the screen reader's view.
Whether the image is fetched successfully or not (e.g. whether the response code was a 2xx code or equivalent) must be ignored when determining the image's type and whether it is a valid image.
This allows servers to return images with error responses, and have them displayed.
The user agents should apply the image sniffing rules to determine the type of the image, with the image's associated Content-Type headers giving the official type. If these rules are not applied, then the type of the image must be the type given by the image's associated Content-Type headers.
User agents must not support non-image resources with the
img
element (e.g. XML files whose root element is an
HTML element). User agents must not run executable code
(e.g. scripts) embedded in the image resource. User agents must only
display the first page of a multipage resource (e.g. a PDF
file). User agents must not allow the resource to act in an
interactive fashion, but should honor any animation in the
resource.
This specification does not specify which image types are to be supported.
The task that is queued by the networking task
source once the resource has been fetched, must, if the download was successful
and the image is available, queue a task to
fire a simple event called load
at the img
element (this
happens after complete
starts
returning true); and otherwise, if the fetching process fails
without a response from the remote server, or completes but the
image is not a valid or supported image, queue a task
to fire a simple event called error
on the img
element.
The task source for these tasks is the DOM manipulation task source.
What an img
element represents depends on the src
attribute and the alt
attribute.
src
attribute is set
and the alt
attribute is set to
the empty stringThe image is either decorative or supplemental to the rest of the content, redundant with some other information in the document.
If the image is available and the user agent is
configured to display that image, then the element
represents the image specified by the src
attribute.
Otherwise, the element represents nothing, and may be omitted completely from the rendering. User agents may provide the user with a notification that an image is present but has been omitted from the rendering.
src
attribute is set
and the alt
attribute is set to a
value that isn't emptyThe image is a key part of the content; the alt
attribute gives a textual
equivalent or replacement for the image.
If the image is available and the user agent is
configured to display that image, then the element
represents the image specified by the src
attribute.
Otherwise, the element represents the text given
by the alt
attribute. User
agents may provide the user with a notification that an image is
present but has been omitted from the rendering.
src
attribute is set
and the alt
attribute is notThe image might be a key part of the content, and there is no textual equivalent of the image available.
In a conforming document, the absence of the alt
attribute indicates that the image
is a key part of the content but that a textual replacement for
the image was not available when the image was generated.
If the image is available, the element
represents the image specified by the src
attribute.
If the image is not available or if the user agent is not configured to display the image, then the user agent should display some sort of indicator that there is an image that is not being rendered, and may, if requested by the user, or if so configured, or when required to provide contextual information in response to navigation, provide caption information for the image, derived as follows:
If the image has a title
attribute whose value is not the empty string, then the value of
that attribute is the caption information; abort these
steps.
If the image is the child of a figure
element
that has a child legend
element, then the contents
of the first such legend
element are the caption
information; abort these steps.
Run the algorithm to create the outline for the document.
If the img
element did not end up associated
with a heading in the outline, or if there are any other images
that are lacking an alt
attribute and that are associated with the same heading in the
outline as the img
element in question, then there
is no caption information; abort these steps.
The caption information is the heading with which the image is associated according to the outline.
src
attribute is not
set and either the alt
attribute
is set to the empty string or the alt
attribute is not set at allThe element represents nothing.
The element represents the text given by the alt
attribute.
The alt
attribute does not
represent advisory information. User agents must not present the
contents of the alt
attribute in
the same way as content of the title
attribute.
User agents may always provide the user with the option to display any image, or to prevent any image from being displayed. User agents may also apply image analysis heuristics to help the user make sense of the image when the user is unable to make direct use of the image, e.g. due to a visual disability or because they are using a text terminal with no graphics capabilities.
The contents of img
elements, if any, are
ignored for the purposes of rendering.
The usemap
attribute,
if present, can indicate that the image has an associated
image map.
The ismap
attribute, when used on an element that is a descendant of an
a
element with an href
attribute, indicates by its
presence that the element provides access to a server-side image
map. This affects how events are handled on the corresponding
a
element.
The ismap
attribute is a
boolean attribute. The attribute must not be specified
on an element that does not have an ancestor a
element
with an href
attribute.
The img
element supports dimension
attributes.
The DOM attributes alt
, src
, useMap
, and isMap
each must
reflect the respective content attributes of the same
name.
width
[ = value ]height
[ = value ]These attributes return the actual rendered dimensions of the image, or zero if the dimensions are not known.
They can be set, to change the corresponding content attributes.
complete
Returns true if the image has been downloaded, decoded, and found to be valid; otherwise, returns false.
Image
( [ width [, height ] ] )Returns a new img
element, with the width
and height
attributes set to the values
passed in the relevant arguments, if applicable.
The DOM attributes width
and height
must return the
rendered width and height of the image, in CSS pixels, if the image
is being rendered, and is being rendered to a visual medium; or else
the intrinsic width and height of the image, in CSS pixels, if the
image is available but not being rendered to a visual medium;
or else 0, if the image is not available or its dimensions
are not known. [CSS21]
On setting, they must act as if they reflected the respective content attributes of the same name.
The DOM attribute complete
must return
true if the user agent has fetched the image specified in the src
attribute, and it is a valid image,
even if the final task queued by
the networking task source for the fetching of the image resource has not yet been
processed. Otherwise, the attribute must return false.
The value of complete
can thus change while a
script is executing.
Three constructors are provided for creating
HTMLImageElement
objects (in addition to the factory
methods from DOM Core such as createElement()
): Image()
, Image(width)
, and Image(width, height)
. When invoked as constructors,
these must return a new HTMLImageElement
object (a new
img
element). If the width argument
is present, the new object's width
content attribute must be set to
width. If the height
argument is also present, the new object's height
content attribute must be set
to height.
A single image can have different appropriate alternative text depending on the context.
In each of the following cases, the same image is used, yet the
alt
text is different each
time. The image is the coat of arms of the Canton Geneva in
Switzerland.
Here it is used as a supplementary icon:
<p>I lived in <img src="carouge.svg" alt=""> Carouge.</p>
Here it is used as an icon representing the town:
<p>Home town: <img src="carouge.svg" alt="Carouge"></p>
Here it is used as part of a text on the town:
<p>Carouge has a coat of arms.</p> <p><img src="carouge.svg" alt="The coat of arms depicts a lion, sitting in front of a tree."></p> <p>It is used as decoration all over the town.</p>
Here it is used as a way to support a similar text where the description is given as well as, instead of as an alternative to, the image:
<p>Carouge has a coat of arms.</p> <p><img src="carouge.svg" alt=""></p> <p>The coat of arms depicts a lion, sitting in front of a tree. It is used as decoration all over the town.</p>
Here it is used as part of a story:
<p>He picked up the folder and a piece of paper fell out.</p> <p><img src="carouge.svg" alt="Shaped like a shield, the paper had a red background, a green tree, and a yellow lion with its tongue hanging out and whose tail was shaped like an S."></p> <p>He stared at the folder. S! The answer he had been looking for all this time was simply the letter S! How had he not seen that before? It all came together now. The phone call where Hector had referred to a lion's tail, the time Marco had stuck his tongue out...</p>
Here it is not known at the time of publication what the image
will be, only that it will be a coat of arms of some kind, and thus
no replacement text can be provided, and instead only a brief
caption for the image is provided, in the title
attribute:
<p>The last user to have uploaded a coat of arms uploaded this one:</p> <p><img src="last-uploaded-coat-of-arms.cgi" title="User-uploaded coat of arms."></p>
Ideally, the author would find a way to provide real replacement text even in this case, e.g. by asking the previous user. Not providing replacement text makes the document more difficult to use for people who are unable to view images, e.g. blind users, or users or very low-bandwidth connections or who pay by the byte, or users who are forced to use a text-only Web browser.
Here are some more examples showing the same picture used in different contexts, with different appropriate alternate texts each time.
<article> <h1>My cats</h1> <h2>Fluffy</h2> <p>Fluffy is my favorite.</p> <img src="fluffy.jpg" alt="She likes playing with a ball of yarn."> <p>She's just too cute.</p> <h2>Miles</h2> <p>My other cat, Miles just eats and sleeps.</p> </article>
<article> <h1>Photography</h1> <h2>Shooting moving targets indoors</h2> <p>The trick here is to know how to anticipate; to know at what speed and what distance the subject will pass by.</p> <img src="fluffy.jpg" alt="A cat flying by, chasing a ball of yarn, can be photographed quite nicely using this technique."> <h2>Nature by night</h2> <p>To achieve this, you'll need either an extremely sensitive film, or immense flash lights.</p> </article>
<article> <h1>About me</h1> <h2>My pets</h2> <p>I've got a cat named Fluffy and a dog named Miles.</p> <img src="fluffy.jpg" alt="Fluffy, my cat, tends to keep itself busy."> <p>My dog Miles and I like go on long walks together.</p> <h2>music</h2> <p>After our walks, having emptied my mind, I like listening to Bach.</p> </article>
<article> <h1>Fluffy and the Yarn</h1> <p>Fluffy was a cat who liked to play with yarn. He also liked to jump.</p> <aside><img src="fluffy.jpg" alt="" title="Fluffy"></aside> <p>He would play in the morning, he would play in the evening.</p> </article>
The requirements for the alt
attribute depend on what the image is intended to represent, as
described in the following sections.
When an a element that is a hyperlink,
or a button
element, has no textual content but
contains one or more images, the alt
attributes must contain text that
together convey the purpose of the link or button.
In this example, a user is asked to pick his preferred color from a list of three. Each color is given by an image, but for users who have configured their user agent not to display images, the color names are used instead:
<h1>Pick your color</h1> <ul> <li><a href="green.html"><img src="green.jpeg" alt="Green"></a></li> <li><a href="blue.html"><img src="blue.jpeg" alt="Blue"></a></li> <li><a href="red.html"><img src="red.jpeg" alt="Red"></a></li> </ul>
In this example, each button has a set of images to indicate the kind of color output desired by the user. The first image is used in each case to give the alternative text.
<button name="rgb"><img src="red" alt="RGB"><img src="green" alt=""><img src="blue" alt=""></button> <button name="cmyk"><img src="cyan" alt="CMYK"><img src="magenta" alt=""><img src="yellow" alt=""><img src="black" alt=""></button>
Since each image represents one part of the text, it could also be written like this:
<button name="rgb"><img src="red" alt="R"><img src="green" alt="G"><img src="blue" alt="B"></button> <button name="cmyk"><img src="cyan" alt="C"><img src="magenta" alt="M"><img src="yellow" alt="Y"><img src="black" alt="K"></button>
However, with other alternative text, this might not work, and putting all the alternative text into one image in each case might make more sense:
<button name="rgb"><img src="red" alt="sRGB profile"><img src="green" alt=""><img src="blue" alt=""></button> <button name="cmyk"><img src="cyan" alt="CMYK profile"><img src="magenta" alt=""><img src="yellow" alt=""><img src="black" alt=""></button>
Sometimes something can be more clearly stated in graphical
form, for example as a flowchart, a diagram, a graph, or a simple
map showing directions. In such cases, an image can be given using
the img
element, but the lesser textual version must
still be given, so that users who are unable to view the image
(e.g. because they have a very slow connection, or because they
are using a text-only browser, or because they are listening to
the page being read out by a hands-free automobile voice Web
browser, or simply because they are blind) are still able to
understand the message being conveyed.
The text must be given in the alt
attribute, and must convey the
same message as the image specified in the src
attribute.
It is important to realize that the alternative text is a replacement for the image, not a description of the image.
In the following example we have a flowchart in image
form, with text in the alt
attribute rephrasing the flowchart in prose form:
<p>In the common case, the data handled by the tokenization stage comes from the network, but it can also come from script.</p> <p><img src="images/parsing-model-overview.png" alt="The network passes data to the Tokenizer stage, which passes data to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer."></p>
Here's another example, showing a good solution and a bad solution to the problem of including an image in a description.
First, here's the good solution. This sample shows how the alternative text should just be what you would have put in the prose if the image had never existed.
<!-- This is the correct way to do things. --> <p> You are standing in an open field west of a house. <img src="house.jpeg" alt="The house is white, with a boarded front door."> There is a small mailbox here. </p>
Second, here's the bad solution. In this incorrect way of doing things, the alternative text is simply a description of the image, instead of a textual replacement for the image. It's bad because when the image isn't shown, the text doesn't flow as well as in the first example.
<!-- This is the wrong way to do things. --> <p> You are standing in an open field west of a house. <img src="house.jpeg" alt="A white house, with a boarded front door."> There is a small mailbox here. </p>
Text such as "Photo of white house with boarded door" would be
equally bad alternative text (though it could be suitable for the
title
attribute or in the
legend
element of a figure
with this
image).
A document can contain information in iconic form. The icon is intended to help users of visual browsers to recognize features at a glance.
In some cases, the icon is supplemental to a text label
conveying the same meaning. In those cases, the alt
attribute must be present but must
be empty.
Here the icons are next to text that conveys the same meaning,
so they have an empty alt
attribute:
<nav> <p><a href="/help/"><img src="/icons/help.png" alt=""> Help</a></p> <p><a href="/configure/"><img src="/icons/configuration.png" alt=""> Configuration Tools</a></p> </nav>
In other cases, the icon has no text next to it describing what
it means; the icon is supposed to be self-explanatory. In those
cases, an equivalent textual label must be given in the alt
attribute.
Here, posts on a news site are labeled with an icon indicating their topic.
<body> <article> <header> <h1>Ratatouille wins <i>Best Movie of the Year</i> award</h1> <p><img src="movies.png" alt="Movies"></p> </header> <p>Pixar has won yet another <i>Best Movie of the Year</i> award, making this its 8th win in the last 12 years.</p> </article> <article> <header> <h1>Latest TWiT episode is online</h1> <p><img src="podcasts.png" alt="Podcasts"></p> </header> <p>The latest TWiT episode has been posted, in which we hear several tech news stories as well as learning much more about the iPhone. This week, the panelists compare how reflective their iPhones' Apple logos are.</p> </article> </body>
Many pages include logos, insignia, flags, or emblems, which stand for a particular entity such as a company, organization, project, band, software package, country, or some such.
If the logo is being used to represent the entity, e.g. as a page
heading, the alt
attribute must
contain the name of the entity being represented by the logo. The
alt
attribute must not
contain text like the word "logo", as it is not the fact that it is
a logo that is being conveyed, it's the entity itself.
If the logo is being used next to the name of the entity that
it represents, then the logo is supplemental, and its alt
attribute must instead be
empty.
If the logo is merely used as decorative material (as branding, or, for example, as a side image in an article that mentions the entity to which the logo belongs), then the entry below on purely decorative images applies. If the logo is actually being discussed, then it is being used as a phrase or paragraph (the description of the logo) with an alternative graphical representation (the logo itself), and the first entry above applies.
In the following snippets, all four of the above cases are present. First, we see a logo used to represent a company:
<h1><img src="XYZ.gif" alt="The XYZ company"></h1>
Next, we see a paragraph which uses a logo right next to the company name, and so doesn't have any alternative text:
<article> <h2>News</h2> <p>We have recently been looking at buying the <img src="alpha.gif" alt=""> ΑΒΓ company, a small Greek company specializing in our type of product.</p>
In this third snippet, we have a logo being used in an aside, as part of the larger article discussing the acquisition:
<aside><p><img src="alpha-large.gif" alt=""></p></aside> <p>The ΑΒΓ company has had a good quarter, and our pie chart studies of their accounts suggest a much bigger blue slice than its green and orange slices, which is always a good sign.</p> </article>
Finally, we have an opinion piece talking about a logo, and the logo is therefore described in detail in the alternative text.
<p>Consider for a moment their logo:</p> <p><img src="/images/logo" alt="It consists of a green circle with a green question mark centered inside it."></p> <p>How unoriginal can you get? I mean, oooooh, a question mark, how <em>revolutionary</em>, how utterly <em>ground-breaking</em>, I'm sure everyone will rush to adopt those specifications now! They could at least have tried for some sort of, I don't know, sequence of rounded squares with varying shades of green and bold white outlines, at least that would look good on the cover of a blue book.</p>
This example shows how the alternative text should be written such that if the image isn't available, and the text is used instead, the text flows seamlessly into the surrounding text, as if the image had never been there in the first place.
Sometimes, an image just consists of text, and the purpose of the image is not to highlight the actual typographic effects used to render the text, but just to convey the text itself.
In such cases, the alt
attribute must be present but must consist of the same text as
written in the image itself.
Consider a graphic containing the text "Earth Day", but with the letters all decorated with flowers and plants. If the text is merely being used as a heading, to spice up the page for graphical users, then the correct alternative text is just the same text "Earth Day", and no mention need be made of the decorations:
<h1><img src="earthdayheading.png" alt="Earth Day"></h1>
In many cases, the image is actually just supplementary, and
its presence merely reinforces the surrounding text. In these
cases, the alt
attribute must be
present but its value must be the empty string.
In general, an image falls into this category if removing the image doesn't make the page any less useful, but including the image makes it a lot easier for users of visual browsers to understand the concept.
A flowchart that repeats the previous paragraph in graphical form:
<p>The network passes data to the Tokenizer stage, which passes data to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer.</p> <p><img src="images/parsing-model-overview.png" alt=""></p>
In these cases, it would be wrong to include alternative text
that consists of just a caption. If a caption is to be included,
then either the title
attribute can
be used, or the figure
and legend
elements can be used. In the latter case, the image would in fact
be a phrase or paragraph with an alternative graphical
representation, and would thus require alternative text.
<!-- Using the title="" attribute --> <p>The network passes data to the Tokenizer stage, which passes data to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer.</p> <p><img src="images/parsing-model-overview.png" alt="" title="Flowchart representation of the parsing model."></p>
<!-- Using <figure> and <legend> --> <p>The network passes data to the Tokenizer stage, which passes data to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer.</p> <figure> <img src="images/parsing-model-overview.png" alt="The Network leads to the Tokenizer, which leads to the Tree Construction. The Tree Construction leads to two items. The first is Script Execution, which leads via document.write() back to the Tokenizer. The second item from which Tree Construction leads is the DOM. The DOM is related to the Script Execution."> <legend>Flowchart representation of the parsing model.</legend> </figure>
<!-- This is WRONG. Do not do this. Instead, do what the above examples do. --> <p>The network passes data to the Tokenizer stage, which passes data to the Tree Construction stage. From there, data goes to both the DOM and to Script Execution. Script Execution is linked to the DOM, and, using document.write(), passes data to the Tokenizer.</p> <p><img src="images/parsing-model-overview.png" alt="Flowchart representation of the parsing model."></p> <!-- Never put the image's caption in the alt="" attribute! -->
A graph that repeats the previous paragraph in graphical form:
<p>According to a study covering several billion pages, about 62% of documents on the Web in 2007 triggered the Quirks rendering mode of Web browsers, about 30% triggered the Almost Standards mode, and about 9% triggered the Standards mode.</p> <p><img src="rendering-mode-pie-chart.png" alt=""></p>
In general, if an image is decorative but isn't especially page-specific, for example an image that forms part of a site-wide design scheme, the image should be specified in the site's CSS, not in the markup of the document.
However, a decorative image that isn't discussed by the
surrounding text still has some relevance can be included in a page
using the img
element. Such images are decorative, but
still form part of the content. In these cases, the alt
attribute must be present but its
value must be the empty string.
Examples where the image is purely decorative despite being relevant would include things like a photo of the Black Rock City landscape in a blog post about an event at Burning Man, or an image of a painting inspired by a poem, on a page reciting that poem. The following snippet shows an example of the latter case (only the first verse is included in this snippet):
<h1>The Lady of Shalott</h1> <p><img src="shalott.jpeg" alt=""></p> <p>On either side the river lie<br> Long fields of barley and of rye,<br> That clothe the wold and meet the sky;<br> And through the field the road run by<br> To many-tower'd Camelot;<br> And up and down the people go,<br> Gazing where the lilies blow<br> Round an island there below,<br> The island of Shalott.</p>
When a picture has been sliced into smaller image files that are
then displayed together to form the complete picture again, one of
the images must have its alt
attribute set as per the relevant rules that would be appropriate
for the picture as a whole, and then all the remaining images must
have their alt
attribute set to
the empty string.
In the following example, a picture representing a company logo for XYZ Corp has been split into two pieces, the first containing the letters "XYZ" and the second with the word "Corp". The alternative text ("XYZ Corp") is all in the first image.
<h1><img src="logo1.png" alt="XYZ Corp"><img src="logo2.png" alt=""></h1>
In the following example, a rating is shown as three filled stars and two empty stars. While the alternative text could have been "★★★☆☆", the author has instead decided to more helpfully give the rating in the form "3 out of 5". That is the alternative text of the first image, and the rest have blank alternative text.
<p>Rating: <meter max=5 value=3><img src="1" alt="3 out of 5" ><img src="1" alt=""><img src="1" alt=""><img src="0" alt="" ><img src="0" alt=""></meter></p>
Generally, image maps should be used instead of slicing an image for links.
However, if an image is indeed sliced and any of the components
of the sliced picture are the sole contents of links, then one image
per link must have alternative text in its alt
attribute representing the purpose
of the link.
In the following example, a picture representing the flying spaghetti monster emblem, with each of the left noodly appendages and the right noodly appendages in different images, so that the user can pick the left side or the right side in an adventure.
<h1>The Church</h1> <p>You come across a flying spaghetti monster. Which side of His Noodliness do you wish to reach out for?</p> <p><a href="?go=left" ><img src="fsm-left.png" alt="Left side. "></a ><img src="fsm-middle.png" alt="" ><a href="?go=right"><img src="fsm-right.png" alt="Right side."></a></p>
In some cases, the image is a critical part of the content. This could be the case, for instance, on a page that is part of a photo gallery. The image is the whole point of the page containing it.
How to provide alternative text for an image that is a key part of the content depends on the image's provenance.
When it is possible for detailed alternative text to be
provided, for example if the image is part of a series of
screenshots in a magazine review, or part of a comic strip, or is
a photograph in a blog entry about that photograph, text that can
serve as a substitute for the image must be given as the contents
of the alt
attribute.
A screenshot in a gallery of screenshots for a new OS, with some alternative text:
<figure> <img src="KDE%20Light%20desktop.png" alt="The desktop is blue, with icons along the left hand side in two columns, reading System, Home, K-Mail, etc. A window is open showing that menus wrap to a second line if they cannot fit in the window. The window has a list of icons along the top, with an address bar below it, a list of icons for tabs along the left edge, a status bar on the bottom, and two panes in the middle. The desktop has a bar at the bottom of the screen with a few buttons, a pager, a list of open applications, and a clock."> <legend>Screenshot of a KDE desktop.</legend> </figure>
A graph in a financial report:
<img src="sales.gif" title="Sales graph" alt="From 1998 to 2005, sales increased by the following percentages with each year: 624%, 75%, 138%, 40%, 35%, 9%, 21%">
Note that "sales graph" would be inadequate alternative text for a sales graph. Text that would be a good caption is not generally suitable as replacement text.
In certain cases, the nature of the image might be such that providing thorough alternative text is impractical. For example, the image could be indistinct, or could be a complex fractal, or could be a detailed topographical map.
In these cases, the alt
attribute must contain some suitable alternative text, but it may
be somewhat brief.
Sometimes there simply is no text that can do justice to an image. For example, there is little that can be said to usefully describe a Rorschach inkblot test. However, a description, even if brief, is still better than nothing:
<figure> <img src="/commons/a/a7/Rorschach1.jpg" alt="A shape with left-right symmetry with indistinct edges, with a small gap in the center, two larger gaps offset slightly from the center, with two similar gaps under them. The outline is wider in the top half than the bottom half, with the sides extending upwards higher than the center, and the center extending below the sides."> <legend>A black outline of the first of the ten cards in the Rorschach inkblot test.</legend> </figure>
Note that the following would be a very bad use of alternative text:
<!-- This example is wrong. Do not copy it. --> <figure> <img src="/commons/a/a7/Rorschach1.jpg" alt="A black outline of the first of the ten cards in the Rorschach inkblot test."> <legend>A black outline of the first of the ten cards in the Rorschach inkblot test.</legend> </figure>
Including the caption in the alternative text like this isn't useful because it effectively duplicates the caption for users who don't have images, taunting them twice yet not helping them any more than if they had only read or heard the caption once.
Another example of an image that defies full description is a fractal, which, by definition, is infinite in complexity.
The following example shows one possible way of providing alternative text for the full view of an image of the Mandelbrot set.
<img src="ms1.jpeg" alt="The Mandelbrot set appears as a cardioid with its cusp on the real axis in the positive direction, with a smaller bulb aligned along the same center line, touching it in the negative direction, and with these two shapes being surrounded by smaller bulbs of various sizes.">
In some unfortunate cases, there might be no alternative text available at all, either because the image is obtained in some automated fashion without any associated alternative text (e.g. a Webcam), or because the page is being generated by a script using user-provided images where the user did not provide suitable or usable alternative text (e.g. photograph sharing sites), or because the author does not himself know what the images represent (e.g. a blind photographer sharing an image on his blog).
In such cases, the alt
attribute's value may be omitted, but one of the following
conditions must be met as well:
title
attribute is
present and has a non-empty value.img
element is in a figure
element that contains a legend
element that contains
content other than inter-element whitespace.img
element is part of the only
paragraph directly in its section, and is the only
img
element without an alt
attribute in its section, and its
section has an associated
heading.Such cases are to be kept to an absolute
minimum. If there is even the slightest possibility of the author
having the ability to provide real alternative text, then it would
not be acceptable to omit the alt
attribute.
A photo on a photo-sharing site, if the site received the image with no metadata other than the caption:
<figure> <img src="1100670787_6a7c664aef.jpg"> <legend>Bubbles traveled everywhere with us.</legend> </figure>
It could also be marked up like this:
<article> <h1>Bubbles traveled everywhere with us.</h1> <img src="1100670787_6a7c664aef.jpg"> </article>
In either case, though, it would be better if a detailed description of the important parts of the image obtained from the user and included on the page.
A blind user's blog in which a photo taken by the user is shown. Initially, the user might not have any idea what the photo he took shows:
<article> <h1>I took a photo</h1> <p>I went out today and took a photo!</p> <figure> <img src="photo2.jpeg"> <legend>A photograph taken blindly from my front porch.</legend> </figure> </article>
Eventually though, the user might obtain a description of the image from his friends and could then include alternative text:
<article> <h1>I took a photo</h1> <p>I went out today and took a photo!</p> <figure> <img src="photo2.jpeg" alt="The photograph shows my hummingbird feeder hanging from the edge of my roof. It is half full, but there are no birds around. In the background, out-of-focus trees fill the shot. The feeder is made of wood with a metal grate, and it contains peanuts. The edge of the roof is wooden too, and is painted white with light blue streaks."> <legend>A photograph taken blindly from my front porch.</legend> </figure> </article>
Sometimes the entire point of the image is that a textual
description is not available, and the user is to provide the
description. For instance, the point of a CAPTCHA image is to see
if the user can literally read the graphic. Here is one way to
mark up a CAPTCHA (note the title
attribute):
<p><label>What does this image say? <img src="captcha.cgi?id=8934" title="CAPTCHA"> <input type=text name=captcha></label> (If you cannot see the image, you can use an <a href="?audio">audio</a> test instead.)</p>
Another example would be software that displays images and asks for alternative text precisely for the purpose of then writing a page with correct alternative text. Such a page could have a table of images, like this:
<table> <thead> <tr> <th> Image <th> Description <tbody> <tr> <td> <img src="2421.png" title="Image 640 by 100, filename 'banner.gif'"> <td> <input name="alt2421"> <tr> <td> <img src="2422.png" title="Image 200 by 480, filename 'ad3.gif'"> <td> <input name="alt2422"> </table>
Notice that even in this example, as much useful information
as possible is still included in the title
attribute.
Since some users cannot use images at all
(e.g. because they have a very slow connection, or because they
are using a text-only browser, or because they are listening to
the page being read out by a hands-free automobile voice Web
browser, or simply because they are blind), the alt
attribute is only allowed to be
omitted rather than being provided with replacement text when no
alternative text is available and none can be made available, as
in the above examples. Lack of effort from the part of the author
is not an acceptable reason for omitting the alt
attribute.
Generally authors should avoid using img
elements
for purposes other than showing images.
If an img
element is being used for purposes other
than showing an image, e.g. as part of a service to count page
views, then the alt
attribute must
be the empty string.
In such cases, the width
and
height
attributes should both
be set to zero.
This section does not apply to documents that are publicly accessible, or whose target audience is not necessarily personally known to the author, such as documents on a Web site, e-mails sent to public mailing lists, or software documentation.
When an image is included in a private communication (such as an
HTML e-mail) aimed at a specific person who is known to be able to
view images, the alt
attribute may
be omitted. However, even in such cases it is strongly recommended
that alternative text be included (as appropriate according to the
kind of image involved, as described in the above entries), so that
the e-mail is still usable should the user use a mail client that
does not support images, or should the document be forwarded on to
other users whose abilities might not include easily seeing
images.
The most general rule for writing alternative text is that the
intent is that replacing every image with the text of its alt
attribute not change the meaning of
the page.
So, in general, alternative text can be written by considering what one would have written had one not been able to include the image.
A corollary to this is that the alt
attribute's value should never
contain text that could be considered the image's caption,
title, or legend. It is supposed to contain
replacement text that could be used by users instead of the
image; it is not meant to supplement the image. The title
attribute can be used for
supplemental information.
One way to think of alternative text is to think about how you would read the page containing the image to someone over the phone, without mentioning that there is an image present. Whatever you say instead of the image is typically a good start for writing the alternative text.
Markup generators (such as WYSIWYG authoring tools) should, wherever possible, obtain alternative text from their users. However, it is recognized that in many cases, this will not be possible.
For images that are the sole contents of links, markup generators should examine the link target to determine the title of the target, or the URL of the target, and use information obtained in this manner as the alternative text.
As a last resort, implementors should either set the alt
attribute to the empty string, under
the assumption that the image is a purely decorative image that
doesn't add any information but is still specific to the surrounding
content, or omit the alt
attribute
altogether, under the assumption that the image is a key part of the
content.
Markup generators should generally avoid using the image's own file name as the alternative text.
Conformance checkers must report the lack of an alt
attribute as an error unless the
conditions listed above for images whose
contents are not known or they have been configured to assume
that the document is an e-mail or document intended for a specific
person who is known to be able to view images.
iframe
elementsrc
name
sandbox
seamless
width
height
interface HTMLIFrameElement : HTMLElement { attribute DOMString src; attribute DOMString name; attribute DOMString sandbox; attribute boolean seamless; attribute DOMString width; attribute DOMString height; };
Objects implementing the HTMLIFrameElement
interface must also implement the
EmbeddingElement
interface defined in the Window
Object specification. [WINDOW]
The iframe
element represents a
nested browsing context.
The src
attribute
gives the address of a page that the nested browsing
context is to contain. The attribute, if present, must be a
valid URL. When the browsing context
is created, if the attribute is present, the user agent must resolve the value of that attribute,
relative to the element, and if that is successful, must then
navigate the element's browsing context to the
resulting absolute URL, with replacement
enabled, and with the iframe
element's
document's browsing context as the source
browsing context. If the user navigates away from this page, the
iframe
's corresponding WindowProxy
object
will proxy new Window
objects for new
Document
objects, but the src
attribute will not
change.
Whenever the src
attribute
is set, the user agent must resolve the value of that attribute, relative to the
element, and if that is successful, the nested browsing
context must be navigated to
the resulting absolute URL, with the
iframe
element's document's browsing
context as the source browsing context.
If the src
attribute is not
set when the element is created, or if its value cannot be resolved, the browsing context will
remain at the initial about:blank
page.
The name
attribute, if present, must be a valid browsing context
name. The given value is used to name the nested
browsing context. When the browsing
context is created, if the attribute is present, the browsing
context name must be set to the value of this attribute;
otherwise, the browsing context name must be set to the
empty string.
Whenever the name
attribute
is set, the nested browsing context's name must be changed to the new
value. If the attribute is removed, the browsing context
name must be set to the empty string.
When content loads in an iframe
, after any load
events are fired within the content
itself, the user agent must fire a simple event called
load
at the iframe
element. When content fails to load (e.g. due to a network error),
then the user agent must fire a simple event called
error
at the element instead.
When there is an active parser in the iframe
, and
when anything in the iframe
is delaying the load event of the
iframe
's browsing context's active
document, the iframe
must delay the load
event of its document.
If, during the handling of the load
event, the browsing
context in the iframe
is again navigated, that will further delay the
load event.
The sandbox
attribute, when specified, enables a set of extra restrictions on
any content hosted by the iframe
. Its value must be an
unordered set of unique space-separated tokens. The
allowed values are allow-same-origin
,
allow-forms
,
and allow-scripts
. When
the attribute is set, the content is treated as being from a unique
origin, forms and scripts are disabled, links are
prevented from targeting other browsing contexts, and plugins are disabled. The
allow-same-origin
token allows the content to be treated as being from the same origin
instead of forcing it into a unique origin, and the allow-forms
and allow-scripts
tokens re-enable forms and scripts respectively (though scripts are
still prevented from creating popups).
While the sandbox
attribute is specified, the iframe
element's
nested browsing context, and all the browsing contexts
nested within it
(either directly or indirectly through other nested browsing
contexts) must have the following flags set:
This flag prevents content from navigating browsing contexts other than the sandboxed browsing context itself (or browsing contexts further nested inside it).
This flag also prevents content
from creating new auxiliary browsing contexts, e.g. using the
target
attribute or the
window.open()
method.
This flag prevents content from instantiating plugins, whether using the embed
element, the object
element,
the applet
element, or through navigation of a nested
browsing context.
sandbox
attribute's
value, when split on
spaces, is found to have the allow-same-origin
keyword setThis flag forces content into a unique origin for the purposes of the same-origin policy.
This flag also prevents script from
reading the document.cookie
DOM
attribute.
The allow-same-origin
attribute is intended for two cases.
First, it can be used to allow content from the same site to be sandboxed to disable scripting, while still allowing access to the DOM of the sandboxed content.
Second, it can be used to embed content from a third-party site, sandboxed to prevent that site from opening popup windows, etc, without preventing the embedded page from communicating back to its originating site, using the database APIs to store data, etc.
This flag only takes effect when the
nested browsing context of the iframe
is
navigated.
sandbox
attribute's
value, when split on
spaces, is found to have the allow-forms
keyword setThis flag blocks form submission.
sandbox
attribute's
value, when split on
spaces, is found to have the allow-scripts
keyword setThis flag blocks script execution.
If the sandbox
attribute is
dynamically added after the iframe
has loaded a page,
scripts already compiled by that page (whether in
script
elements, or in event handler
attributes, or elsewhere) will continue to run. Only
new scripts will be prevented from executing by this
flag.
These flags must not be set unless the conditions listed above define them as being set.
In this example, some completely-unknown, potentially hostile, user-provided HTML content is embedded in a page. Because it is sandboxed, it is treated by the user agent as being from a unique origin, despite the content being served from the same site. Thus it is affected by all the normal cross-site restrictions. In addition, the embedded page has scripting disabled, plugins disabled, forms disabled, and it cannot navigate any frames or windows other than itself (or any frames or windows it itself embeds).
<p>We're not scared of you! Here is your content, unedited:</p> <iframe sandbox src="getusercontent.cgi?id=12193"></iframe>
Note that cookies are still sent to the server in the getusercontent.cgi
request, though they are not
visible in the document.cookie
DOM
attribute.
In this example, a gadget from another site is embedded. The gadget has scripting and forms enabled, and the origin sandbox restrictions are lifted, allowing the gadget to communicate with its originating server. The sandbox is still useful, however, as it disables plugins and popups, thus reducing the risk of the user being exposed to malware and other annoyances.
<iframe sandbox="allow-same-origin allow-forms allow-scripts" src="http://maps.example.com/embedded.html"></iframe>
The seamless
attribute is a boolean attribute. When specified, it indicates that
the iframe
element's browsing context is
to be rendered in a manner that makes it appear to be part of the
containing document (seamlessly included in the parent
document). Specifically, when the attribute is
set on an element and while the browsing context's
active document has the same origin as the
iframe
element's document, or the browsing
context's active document's address has the same
origin as the iframe
element's document, the
following requirements apply:
The user agent must set the seamless browsing context flag to true for that browsing context. This will cause links to open in the parent browsing context.
In a CSS-supporting user agent: the user agent must add all
the style sheets that apply to the iframe
element to
the cascade of the active document of the
iframe
element's nested browsing context,
at the appropriate cascade levels, before any style sheets
specified by the document itself.
In a CSS-supporting user agent: the user agent must, for the
purpose of CSS property inheritance only, treat the root element of
the active document of the iframe
element's nested browsing context as being a child of
the iframe
element. (Thus inherited properties on the
root element of the document in the iframe
will
inherit the computed values of those properties on the
iframe
element instead of taking their initial
values.)
In visual media, in a CSS-supporting user agent: the user agent
should set the intrinsic width of the iframe
to the
width that the element would have if it was a non-replaced
block-level element with 'width: auto'.
In visual media, in a CSS-supporting user agent: the user
agent should set the intrinsic height of the iframe
to
the height of the bounding box around the content rendered in the
iframe
at its current width (as given in the previous
bullet point), as it would be if the scrolling position was such
that the top of the viewport for the content rendered in the
iframe
was aligned with the origin of that content's
canvas.
In visual media, in a CSS-supporting user agent: the user agent
must force the height of the initial containing block of the
active document of the nested browsing
context of the iframe
to zero.
This is intended to get around the otherwise circular dependency of percentage dimensions that depend on the height of the containing block, thus affecting the height of the document's bounding box, thus affecting the height of the viewport, thus affecting the size of the initial containing block.
In speech media, the user agent should render the nested browsing context without announcing that it is a separate document.
User agents should, in general, act as if the active
document of the iframe
's nested browsing
context was part of the document that the
iframe
is in.
For example if the user agent supports listing all the links in a document, links in "seamlessly" nested documents would be included in that list without being significantly distinguished from links in the document itself.
If the attribute is not specified, or if the origin conditions listed above are not met, then the user agent should render the nested browsing context in a manner that is clearly distinguishable as a separate browsing context, and the seamless browsing context flag must be set to false for that browsing context.
It is important that user agents recheck the
above conditions whenever the active document of the
nested browsing context of the iframe
changes, such that the seamless browsing context flag
gets unset if the nested browsing context is navigated to another origin.
The attribute can be set or removed dynamically, with the rendering updating in tandem.
In this example, the site's navigation is embedded using a
client-side include using an iframe
. Any links in the
iframe
will, in new user agents, be automatically
opened in the iframe
's parent browsing context; for
legacy user agents, the site could also include a base
element with a target
attribute with the value _parent
. Similarly,
in new user agents the styles of the parent page will be
automatically applied to the contents of the frame, but to support
legacy user agents authors might wish to include the styles
explicitly.
<nav><iframe seamless src="nav.include.html"></iframe></nav>
The iframe
element supports dimension
attributes for cases where the embedded content has specific
dimensions (e.g. ad units have well-defined dimensions).
An iframe
element never has fallback
content, as it will always create a nested browsing
context, regardless of whether the specified initial contents
are successfully used.
Descendants of iframe
elements represent
nothing. (In legacy user agents that do not support
iframe
elements, the contents would be parsed as markup
that could act as fallback content.)
The content model of iframe
elements is text, except
that the text must be such that ... anyone
have any bright ideas?
The HTML parser treats markup inside
iframe
elements as text.
The DOM attributes src
, name
, sandbox
, and seamless
must
reflect the respective content attributes of the same
name.
embed
elementsrc
type
width
height
interface HTMLEmbedElement : HTMLElement { attribute DOMString src; attribute DOMString type; attribute DOMString width; attribute DOMString height; };
Depending on the type of content instantiated by the
embed
element, the node may also support other
interfaces.
The embed
element represents an
integration point for an external (typically non-HTML) application
or interactive content.
The src
attribute
gives the address of the resource being embedded. The attribute, if
present, must contain a valid URL.
The type
attribute, if present, gives the MIME type of the plugin to
instantiate. The value must be a valid MIME type, optionally with
parameters. If both the type
attribute and the src
attribute
are present, then the type
attribute must specify the same type as the explicit Content-Type metadata of the
resource given by the src
attribute. [RFC2046]
When the element is created with neither a src
attribute nor a type
attribute, and when attributes
are removed such that neither attribute is present on the element
anymore, and when the element has an ancestor object
element that is not showing its fallback
content, any plugins instantiated for the element must be
removed, and the embed
element represents nothing.
When the sandboxed plugins browsing
context flag is set on the browsing context for
which the embed
element's document is the active
document, then the user agent must render the
embed
element in a manner that conveys that the
plugin was disabled. The user agent may offer the user
the option to override the sandbox and instantiate the
plugin anyway; if the user invokes such an option, the
user agent must act as if the sandboxed plugins browsing
context flag was not set for the purposes of this
element.
Plugins are disabled in sandboxed browsing contexts because they might not honor the restrictions imposed by the sandbox (e.g. they might allow scripting even when scripting in the sandbox is disabled). User agents should convey the danger of overriding the sandbox to the user if an option to do so is provided.
When the element is created with a src
attribute, and whenever the src
attribute is subsequently set, and
whenever the type
attribute is
set or removed while the element has a src
attribute, if the element is not
in a sandboxed browsing context and not a descendant of an
object
element that is not showing its fallback
content, the user agent must resolve the value of the attribute, relative to the
element, and if that is successful, should fetch the
resulting absolute URL. The task that is queued by the networking task source once
the resource has been fetched must find
and instantiate an appropriate plugin based on the
content's type, and hand
that plugin the content of the resource, replacing any
previously instantiated plugin for the element.
Fetching the resource must delay the load event of the element's document.
The type of the content being embedded is defined as follows:
If the element has a type
attribute, and that attribute's
value is a type that a plugin supports, then the value
of the type
attribute is the
content's type.
Otherwise, if the <path> component of the URL of the specified resource matches a pattern that a plugin supports, then the content's type is the type that that plugin can handle.
For example, a plugin might say that it can
handle resources with <path>
components that end with the four character string ".swf
".
It would be better if browsers didn't do extension sniffing like this, and only based their decision on the actual contents of the resource. Couldn't we just apply the sniffed type of a resource steps?
Otherwise, if the specified resource has explicit Content-Type metadata, then that is the content's type.
Otherwise, the content has no type and there can be no appropriate plugin for it.
Whether the resource is fetched successfully or not (e.g. whether the response code was a 2xx code or equivalent) must be ignored when determining the resource's type and when handing the resource to the plugin.
This allows servers to return data for plugins even with error responses (e.g. HTTP 500 Internal Server Error codes can still contain plugin data).
When the element is created with a type
attribute and no src
attribute, and whenever the type
attribute is subsequently set,
so long as no src
attribute is
set, and whenever the src
attribute is removed when the element has a type
attribute, if the element is not
in a sandboxed browsing context, user agents should find and
instantiate an appropriate plugin based on the value of
the type
attribute.
Any (namespace-less) attribute may be specified on the
embed
element, so long as its name is
XML-compatible and contains no characters in the range
U+0041 .. U+005A (LATIN CAPITAL LETTER A LATIN CAPITAL LETTER
Z).
All attributes in HTML documents get lowercased automatically, so the restriction on uppercase letters doesn't affect such documents.
The user agent should pass the names and values of all the
attributes of the embed
element that have no namespace
to the plugin used, when it is instantiated.
If the plugin instantiated for the
embed
element supports a scriptable interface, the
HTMLEmbedElement
object representing the element should
expose that interface while the element is instantiated.
The embed
element has no fallback
content. If the user agent can't find a suitable plugin, then
the user agent must use a default plugin. (This default could be as
simple as saying "Unsupported Format".)
The embed
element supports dimension
attributes.
The DOM attributes src
and type
each must
reflect the respective content attributes of the same
name.
object
elementparam
elements, then, transparent.data
type
name
usemap
form
width
height
interface HTMLObjectElement : HTMLElement { attribute DOMString data; attribute DOMString type; attribute DOMString name; attribute DOMString useMap; readonly attribute HTMLFormElement form; attribute DOMString width; attribute DOMString height; };
Objects implementing the HTMLObjectElement
interface must also implement the
EmbeddingElement
interface defined in the Window
Object specification. [WINDOW]
Depending on the type of content instantiated by the
object
element, the node may also support other
interfaces.
The object
element can represent an external
resource, which, depending on the type of the resource, will either
be treated as an image, as a nested browsing context,
or as an external resource to be processed by a
plugin.
The data
attribute, if present, specifies the address of the resource. If
present, the attribute must be a valid URL.
The type
attribute, if present, specifies the type of the resource. If
present, the attribute must be a valid MIME type, optionally with
parameters. [RFC2046]
One or both of the data
and
type
attributes must be
present.
The name
attribute, if present, must be a valid browsing context
name. The given value is used to name the nested
browsing context, if applicable.
When the element is created, and subsequently whenever the classid
attribute changes or is
removed, or, if the classid
attribute is not present, whenever the data
attribute changes or is
removed, or, if neither classid
attribute nor the data
attribute are present, whenever
the type
attribute changes or
is removed, the user agent must run the following steps to determine
what the object
element represents:
If the element has an ancestor object
element that
is not showing its fallback content, then
jump to the last step in the overall set of steps (fallback).
If the classid
attribute is present, and has a value that isn't the empty string,
then: if the user agent can find a plugin suitable
according to the value of the classid
attribute, and plugins aren't being sandboxed,
then that plugin should be
used, and the value of the data
attribute, if any, should be
passed to the plugin. If no suitable
plugin can be found, or if the plugin
reports an error, jump to the last step in the overall set of
steps (fallback).
If the data
attribute
is present, then:
If the type
attribute is present and its value is not a type that the user
agent supports, and is not a type that the user agent can find a
plugin for, then the user agent may jump to the last
step in the overall set of steps (fallback) without fetching the
content to examine its real type.
Resolve the
URL specified by the data
attribute, relative to the
element.
If that is successful, fetch the resulting absolute URL.
Fetching the resource must delay the load event of the element's document until the task that is queued by the networking task source once the resource has been fetched (defined next) has been run.
If the resource is not yet available (e.g. because the resource was not available in the cache, so that loading the resource required making a request over the network), then jump to the last step in the overall set of steps (fallback). The task that is queued by the networking task source once the resource is available must restart this algorithm from this step. Resources can load incrementally; user agents may opt to consider a resource "available" whenever enough data has been obtained to begin processing the resource.
If the load failed (e.g. the URL could not be
resolved, there was an HTTP
404 error, there was a DNS error), fire a simple
event called error
at the
element, then jump to the last step in the overall set of steps
(fallback).
Determine the resource type, as follows:
Let the resource type be unknown.
If the resource has associated Content-Type metadata, then let the resource type be the type specified in the resource's Content-Type metadata.
If the resource type is unknown or
"application/octet-stream
" and there is
a type
attribute present
on the object
element, then change the resource type to instead be the type specified
in that type
attribute.
Otherwise, if the resource type is
"application/octet-stream
" but there is
no type
attribute on the
object
element, then change the resource type to be unknown, so that the
sniffing rules in the next step are invoked.
If the resource type is still unknown, then change the resource type to instead be the sniffed type of the resource.
Handle the content as given by the first of the following cases that matches:
The user agent should use that plugin and pass the content of the resource to that plugin. If the plugin reports an error, then jump to the last step in the overall set of steps (fallback).
image/
"The object
element must be associated with a
nested browsing context, if it does not already
have one. The element's nested browsing context
must then be navigated to the
given resource, with replacement enabled, and
with the object
element's document's
browsing context as the source browsing
context. (The data
attribute of the
object
element doesn't get updated if the
browsing context gets further navigated to other
locations.)
The object
element represents the
nested browsing context.
If the name
attribute
is present, the browsing context name must be set
to the value of this attribute; otherwise, the browsing
context name must be set to the empty string.
navigation might end up treating it as something else, because it can do sniffing. how should we handle that? it could also refetch the resource entirely, maybe from another application cache.
image/
", and support for images has not been
disabledApply the image sniffing rules to determine the type of the image.
The object
element represents the
specified image. The image is not a nested browsing
context.
If the image cannot be rendered, e.g. because it is malformed or in an unsupported format, jump to the last step in the overall set of steps (fallback).
The given resource type is not supported. Jump to the last step in the overall set of steps (fallback).
The element's contents are not part of what the
object
element represents.
Once the resource is completely loaded, fire a
simple event called load
at the element.
If the data
attribute
is absent but the type
attribute is present, plugins
aren't being sandboxed, and the user agent can find a plugin
suitable according to the value of the type
attribute, then that plugin
should be used. If no suitable plugin
can be found, or if the plugin reports an error, jump to the next
step (fallback).
(Fallback.) The object
element
represents the element's children, ignoring any
leading param
element children. This is the element's
fallback content.
When the algorithm above instantiates a
plugin, the user agent should pass the names and values
of all the attributes on the element, and all the names and
values of parameters
given by param
elements that are children of the
object
element, in tree order, to the
plugin used. If the plugin supports a
scriptable interface, the HTMLObjectElement
object
representing the element should expose that interface. The
object
element represents the
plugin. The plugin is not a nested
browsing context.
If the sandboxed plugins browsing
context flag is set on the browsing context for
which the object
element's document is the active
document, then the steps above must always act as if they had
failed to find a plugin, even if one would otherwise have been
used.
Due to the algorithm above, the contents of object
elements act as fallback content, used only when
referenced resources can't be shown (e.g. because it returned a 404
error). This allows multiple object
elements to be
nested inside each other, targeting multiple user agents with
different capabilities, with the user agent picking the first one it
supports.
Whenever the name
attribute
is set, if the object
element has a nested
browsing context, its name must be changed to the new value. If the attribute
is removed, if the object
element has a browsing
context, the browsing context name must be set
to the empty string.
The usemap
attribute,
if present while the object
element represents an
image, can indicate that the object has an associated image
map. The attribute must be ignored if the
object
element doesn't represent an image.
The form
attribute is used to
explicitly associate the object
element with its
form owner.
Constraint validation: object
elements are always barred from constraint
validation.
The object
element supports dimension
attributes.
The DOM attributes data
, type
, name
, and useMap
each must
reflect the respective content attributes of the same
name.
In the following example, a Java applet is embedded in a page
using the object
element. (Generally speaking, it is
better to avoid using applets like these and instead use native
JavaScript and HTML to provide the functionality, since that way
the application will work on all Web browsers without requiring a
third-party plugin. Many devices, especially embedded devices, do
not support third-party technologies like Java.)
<figure> <object type="application/x-java-applet"> <param name="code" value="MyJavaClass"> <p>You do not have Java available, or it is disabled.</p> </object> <legend>My Java Clock</legend> </figure>
In this example, an HTML page is embedded in another using the
object
element.
<figure> <object data="clock.html"></object> <legend>My HTML Clock</legend> </figure>
param
elementobject
element, before any flow content.name
value
interface HTMLParamElement : HTMLElement { attribute DOMString name; attribute DOMString value; };
The param
element defines parameters for plugins
invoked by object
elements. It does not represent anything on its own.
The name
attribute gives the name of the parameter.
The value
attribute gives the value of the parameter.
Both attributes must be present. They may have any value.
If both attributes are present, and if the parent element of the
param
is an object
element, then the
element defines a parameter with the given
name/value pair.
The DOM attributes name
and value
must both
reflect the respective content attributes of the same
name.
video
elementcontrols
attribute: Interactive content.src
attribute: transparent.src
attribute: one or more source
elements, then, transparent.src
poster
autobuffer
autoplay
loop
controls
width
height
interface HTMLVideoElement : HTMLMediaElement { attribute DOMString width; attribute DOMString height; readonly attribute unsigned long videoWidth; readonly attribute unsigned long videoHeight; attribute DOMString poster; };
A video
element represents a video or movie.
Content may be provided inside the video
element. User agents should not show this content
to the user; it is intended for older Web browsers which do
not support video
, so that legacy video plugins can be
tried, or to show text to the users of these older browser informing
them of how to access the video contents.
In particular, this content is not fallback content intended to address accessibility concerns. To make video content accessible to the blind, deaf, and those with other physical or cognitive disabilities, authors are expected to provide alternative media streams and/or to embed accessibility aids (such as caption or subtitle tracks) into their media streams.
The video
element is a media element
whose media data is ostensibly video data, possibly
with associated audio data.
The src
, autobuffer
, autoplay
, loop
, and controls
attributes are the attributes common to all media
elements.
The poster
attribute gives the address of an image file that the user agent can
show while no video data is available. The attribute, if present,
must contain a valid URL. If the
specified resource is to be used, then, when the element is created
or when the poster
attribute
is set, its value must be resolved relative to the element, and if that is
successful, the resulting absolute URL must be fetched; this must delay the load
event of the element's document. The poster frame
is then the image obtained from that resource, if any.
The image given by the poster
attribute, the poster
frame, is intended to be a representative frame of the video
(typically one of the first non-blank frames) that gives the user an
idea of what the video is like.
The poster
DOM
attribute must reflect the poster
content attribute.
When no video data is available (the element's readyState
attribute is either
HAVE_NOTHING
, or HAVE_METADATA
but no video
data has yet been obtained at all), the video
element
represents either the poster frame, or
nothing.
When a video
element is paused and the current playback position is the first
frame of video, the element represents either the frame
of video corresponding to the current playback position or the poster
frame, at the discretion of the user agent.
Notwithstanding the above, the poster frame should be preferred over nothing, but the poster frame should not be shown again after a frame of video has been shown.
When a video
element is paused at any other position, the
element represents the frame of video corresponding to
the current playback
position, or, if that is not yet available (e.g. because the
video is seeking or buffering), the last frame of the video to have
been rendered.
When a video
element is potentially
playing, it represents the frame of video at the
continuously increasing "current" position. When the current playback
position changes such that the last frame rendered is no
longer the frame corresponding to the current playback
position in the video, the new frame must be
rendered. Similarly, any audio associated with the video must, if
played, be played synchronized with the current playback
position, at the specified volume with the specified mute state.
When a video
element is neither potentially
playing nor paused
(e.g. when seeking or stalled), the element represents
the last frame of the video to have been rendered.
Which frame in a video stream corresponds to a particular playback position is defined by the video stream's format.
In addition to the above, the user agent may provide messages to the user (such as "buffering", "no video loaded", "error", or more detailed information) by overlaying text or icons on the video or other areas of the element's playback area, or in another appropriate manner.
User agents that cannot render the video may instead make the element represent a link to an external video playback utility or to the video data itself.
videoWidth
videoHeight
These attributes return the intrinsic dimensions of the video, or zero if the dimensions are not known.
The intrinsic width and intrinsic height of the media resource are the dimensions of the resource in CSS pixels after taking into account the resource's dimensions, aspect ratio, clean aperture, resolution, and so forth, as defined for the format used by the resource.
The videoWidth
DOM
attribute must return the intrinsic width of the
video in CSS pixels. The videoHeight
DOM
attribute must return the intrinsic height of
the video in CSS pixels. If the element's readyState
attribute is HAVE_NOTHING
, then the
attributes must return 0.
The video
element supports dimension
attributes.
Video content should be rendered inside the element's playback area such that the video content is shown centered in the playback area at the largest possible size that fits completely within it, with the video content's aspect ratio being preserved. Thus, if the aspect ratio of the playback area does not match the aspect ratio of the video, the video will be shown letterboxed or pillarboxed. Areas of the element's playback area that do not contain the video represent nothing.
The intrinsic width of a video
element's playback
area is the intrinsic
width of the video resource, if that is available; otherwise
it is the intrinsic width of the poster frame, if that
is available; otherwise it is 300 CSS pixels.
The intrinsic height of a video
element's playback
area is the intrinsic
height of the video resource, if that is available; otherwise
it is the intrinsic height of the poster frame, if that
is available; otherwise it is 150 CSS pixels.
User agents should provide controls to enable or disable the display of closed captions associated with the video stream, though such features should, again, not interfere with the page's normal rendering.
User agents may allow users to view the video content in manners
more suitable to the user (e.g. full-screen or in an independent
resizable window). As for the other user interface features,
controls to enable this should not interfere with the page's normal
rendering unless the user agent is exposing a user interface. In such an
independent context, however, user agents may make full user
interfaces visible, with, e.g., play, pause, seeking, and volume
controls, even if the controls
attribute is absent.
User agents may allow video playback to affect system features that could interfere with the user's experience; for example, user agents could disable screensavers while video playback is in progress.
User agents should not provide a public API to cause videos to be shown full-screen. A script, combined with a carefully crafted video file, could trick the user into thinking a system-modal dialog had been shown, and prompt the user for a password. There is also the danger of "mere" annoyance, with pages launching full-screen videos when links are clicked or pages navigated. Instead, user-agent specific interface features may be provided to easily allow the user to obtain a full-screen playback mode.
video
elementsUser agen